IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v521y2019icp484-492.html
   My bibliography  Save this article

A novel word ranking method based on distorted entropy

Author

Listed:
  • Mehri, Ali
  • Agahi, Hamzeh
  • Mehri-Dehnavi, Hossein

Abstract

This paper proposes an application of distorted entropy as well-known tools for non-additive expected utility theory in word ranking. Our algorithms for two books “Statistical Inference” by Casella and Berger and “The Origin of Species” by Charles Darwin show that our method on the distorted entropy improves the corresponding ones in the literature.

Suggested Citation

  • Mehri, Ali & Agahi, Hamzeh & Mehri-Dehnavi, Hossein, 2019. "A novel word ranking method based on distorted entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 484-492.
  • Handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:484-492
    DOI: 10.1016/j.physa.2019.01.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300810
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carretero-Campos, C. & Bernaola-Galván, P. & Coronado, A.V. & Carpena, P., 2013. "Improving statistical keyword detection in short texts: Entropic and clustering approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1481-1492.
    2. Zhou, Hongding & Slater, Gary W., 2003. "A metric to search for relevant words," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 309-327.
    3. Jamaati, Maryam & Mehri, Ali, 2018. "Text mining by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1368-1376.
    4. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    5. Mehri, Ali & Darooneh, Amir H., 2011. "The role of entropy in word ranking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3157-3163.
    6. Yang, Zhen & Lei, Jianjun & Fan, Kefeng & Lai, Yingxu, 2013. "Keyword extraction by entropy difference between the intrinsic and extrinsic mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4523-4531.
    7. Alejandro Balbás & José Garrido & Silvia Mayoral, 2009. "Properties of Distortion Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 385-399, September.
    8. Panda, S. K. & Nagabhushanam, A., 1995. "Fuzzy data distortion," Computational Statistics & Data Analysis, Elsevier, vol. 19(5), pages 553-562, May.
    9. J. P. Herrera & P. A. Pury, 2008. "Statistical keyword detection in literary corpora," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(1), pages 135-146, May.
    10. Sun, Xianming & Gan, Siqing & Vanmaele, Michèle, 2015. "Analytical approximation for distorted expectations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 246-252.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaishnavi Pillalamarri & Angelin Gladston, 2022. "SLIC-Based Cloud Removal Approach with Inpainting for Landsat 8 SAR Images," International Journal of Information Retrieval Research (IJIRR), IGI Global, vol. 12(1), pages 1-17, January.
    2. Ramezani, Zahra & Pourdarvish, Ahmad, 2021. "Transfer learning using Tsallis entropy: An application to Gravity Spy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    3. Mehri, Ali & Jamaati, Maryam, 2021. "Statistical metrics for languages classification: A case study of the Bible translations," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamaati, Maryam & Mehri, Ali, 2018. "Text mining by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1368-1376.
    2. Carretero-Campos, C. & Bernaola-Galván, P. & Coronado, A.V. & Carpena, P., 2013. "Improving statistical keyword detection in short texts: Entropic and clustering approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1481-1492.
    3. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“The use of flexible quantile-based measures in risk assessment”," IREA Working Papers 201323, University of Barcelona, Research Institute of Applied Economics, revised Dec 2013.
    4. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    5. Mehri, Ali & Jamaati, Maryam, 2021. "Statistical metrics for languages classification: A case study of the Bible translations," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    7. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    8. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    9. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    10. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    11. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    12. Boonen, Tim J. & Jiang, Wenjun, 2024. "Robust insurance design with distortion risk measures," European Journal of Operational Research, Elsevier, vol. 316(2), pages 694-706.
    13. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    14. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    15. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming, 2017. "Risk measurement of a guaranteed annuity option under a stochastic modelling framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 100-119.
    16. Król, Michał, 2012. "Product differentiation decisions under ambiguous consumer demand and pessimistic expectations," International Journal of Industrial Organization, Elsevier, vol. 30(6), pages 593-604.
    17. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    18. ,, 2014. "Second order beliefs models of choice under imprecise risk: non-additive second order beliefs vs. nonlinear second order utility," Theoretical Economics, Econometric Society, vol. 9(3), September.
    19. Stephen P. Jenkins & Philippe Van Kerm, 2016. "Assessing Individual Income Growth," Economica, London School of Economics and Political Science, vol. 83(332), pages 679-703, October.
    20. Goovaerts, M. J. & Dhaene, J., 1999. "Supermodular ordering and stochastic annuities," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 281-290, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:484-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.