IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i8p1518-1543.html
   My bibliography  Save this article

On the block thresholding wavelet estimators with censored data

Author

Listed:
  • Li, Linyuan

Abstract

We consider block thresholding wavelet-based density estimators with randomly right-censored data and investigate their asymptotic convergence rates. Unlike for the complete data case, the empirical wavelet coefficients are constructed through the Kaplan-Meier estimators of the distribution functions in the censored data case. On the basis of a result of Stute [W. Stute, The central limit theorem under random censorship, Ann. Statist. 23 (1995) 422-439] that approximates the Kaplan-Meier integrals as averages of i.i.d. random variables with a certain rate in probability, we can show that these wavelet empirical coefficients can be approximated by averages of i.i.d. random variables with a certain error rate in L2. Therefore we can show that these estimators, based on block thresholding of empirical wavelet coefficients, achieve optimal convergence rates over a large range of Besov function classes , p>=2, q>=1 and nearly optimal convergence rates when 1

Suggested Citation

  • Li, Linyuan, 2008. "On the block thresholding wavelet estimators with censored data," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1518-1543, September.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1518-1543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00015-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Antoniadis & G. Grégoire & G. Nason, 1999. "Density and hazard rate estimation for right‐censored data by using wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 63-84.
    2. Chicken, Eric & Cai, T. Tony, 2005. "Block thresholding for density estimation: local and global adaptivity," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 76-106, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabienne Comte & Gwennaelle Mabon & Adeline Samson, 2017. "Spline regression for hazard rate estimation when data are censored and measured with error," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(2), pages 115-140, May.
    2. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    3. Fabienne Comte & Adeline Samson & Julien J. Stirnemann, 2018. "Hazard estimation with censoring and measurement error: application to length of pregnancy," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 338-359, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    2. Fabienne Comte & Gwennaelle Mabon & Adeline Samson, 2017. "Spline regression for hazard rate estimation when data are censored and measured with error," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(2), pages 115-140, May.
    3. Li, Jiexiang & Tran, Lanh Tat, 2007. "Hazard rate estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1337-1355, August.
    4. Renyu Ye & Xinsheng Liu & Yuncai Yu, 2020. "Pointwise Optimality of Wavelet Density Estimation for Negatively Associated Biased Sample," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    5. Li, Yunzhe & Lee, Juhee & Kottas, Athanasios, 2024. "Bayesian nonparametric Erlang mixture modeling for survival analysis," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    6. Sam Efromovich & Jufen Chu, 2018. "Hazard rate estimation for left truncated and right censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 889-917, August.
    7. Liang, Han-Ying & de Uña-Álvarez, Jacobo, 2011. "Wavelet estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 448-467, March.
    8. Chen, Di-Rong & Cheng, Kun & Liu, Chao, 2022. "Framelet block thresholding estimator for sparse functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. E. Brunel & F. Comte & A. Guilloux, 2009. "Nonparametric density estimation in presence of bias and censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 166-194, May.
    10. Sam Efromovich, 2016. "Minimax theory of nonparametric hazard rate estimation: efficiency and adaptation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 25-75, February.
    11. Angers, Jean-Francois & MacGibbon, Brenda, 2013. "Hazard function estimation with nonnegative “wavelets”," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 969-978.
    12. Bulla, Ingo & Chesneau, Christophe & Navarro, Fabien & Mark, Tanya, 2015. "A note on the adaptive estimation of a bi-dimensional density in the case of knowledge of the copula density," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 6-13.
    13. Efromovich, Sam, 2011. "Nonparametric estimation of the anisotropic probability density of mixed variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 468-481, March.
    14. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    15. Elodie Brunel & Fabienne Comte & Agathe Guilloux, 2008. "Estimation Strategies for Censored Lifetimes with a Lexis‐Diagram Type Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 557-576, September.
    16. Steigerwald, Douglas G, 2006. "A Note on Adaptive Estimation," University of California at Santa Barbara, Economics Working Paper Series qt94v9g27p, Department of Economics, UC Santa Barbara.
    17. Bezandry, Paul H. & Bonney, George E. & Gannoun, Ali, 2005. "Consistent estimation of the density and hazard rate functions for censored data via the wavelet method," Statistics & Probability Letters, Elsevier, vol. 74(4), pages 366-372, October.
    18. Krebs, Johannes T.N., 2018. "Nonparametric density estimation for spatial data with wavelets," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 300-319.
    19. Karol Dziedziul & Magdalena Kucharska & Barbara Wolnik, 2011. "Estimation of the smoothness of density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 991-1001.
    20. Sandra Plancade, 2011. "Model selection for hazard rate estimation in presence of censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 313-347, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1518-1543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.