IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i3p468-481.html
   My bibliography  Save this article

Nonparametric estimation of the anisotropic probability density of mixed variables

Author

Listed:
  • Efromovich, Sam

Abstract

The problem of nonparametric estimation of the joint probability density of a vector of continuous and ordinal/nominal categorical random variables with bounded support is considered. There are numerous publications devoted to the cases of either continuous or categorical variables, and the curse of dimensionality and strong regularity assumptions are the two familiar issues in the literature. Mixed variables occur in practically all applications of the statistical science and, nonetheless, the literature devoted to the joint density estimation is practically next to none. This paper develops the theory of estimation of the density of mixed variables which is on par with results known for simpler settings. Specifically, a data-driven estimator is developed that adapts to unknown anisotropic smoothness of the joint density and, whenever the density depends on a smaller number of variables, performs a dimension reduction that implies the corresponding optimal rate of the mean integrated squared error (MISE) convergence. The results hold without traditional, in the density estimation literature, minimal regularity assumptions like differentiability or continuity of the density. The procedure of estimation is based on mimicking an oracle-estimator that knows the underlying density, and the main theoretical result is the oracle inequality which relates the MISEs of the estimator and the oracle-estimator. The proof is based on a new exponential inequality for Sobolev statistics which is of interest on its own merits.

Suggested Citation

  • Efromovich, Sam, 2011. "Nonparametric estimation of the anisotropic probability density of mixed variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 468-481, March.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:468-481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00212-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    2. Grund, B., 1993. "Kernel Estimators for Cell Probabilities," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 283-308, August.
    3. Grund, B. & Hall, P., 1993. "On the Performance of Kernel Estimators for High-Dimensional, Sparse Binary Data," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 321-344, February.
    4. Sapatinas, Theofanis & Shanbhag, Damodar N., 2010. "Moment properties of multivariate infinitely divisible laws and criteria for multivariate self-decomposability," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 500-511, March.
    5. Racine, Jeffrey S., 2008. "Nonparametric Econometrics: A Primer," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(1), pages 1-88, March.
    6. Song, Qiongxia & Yang, Lijian, 2010. "Oracally efficient spline smoothing of nonlinear additive autoregression models with simultaneous confidence band," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2008-2025, October.
    7. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    8. Chicken, Eric & Cai, T. Tony, 2005. "Block thresholding for density estimation: local and global adaptivity," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 76-106, July.
    9. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
    10. Jeffrey Racine, 2008. "Nonparametric econometrics: a primer (in Russian)," Quantile, Quantile, issue 4, pages 7-56, March.
    11. Jianhua Z. Huang & Lijian Yang, 2004. "Identification of non‐linear additive autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 463-477, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.
    2. Andriy Norets & Justinas Pelenis, 2022. "Adaptive Bayesian Estimation of Discrete‐Continuous Distributions Under Smoothness and Sparsity," Econometrica, Econometric Society, vol. 90(3), pages 1355-1377, May.
    3. Norets, Andriy & Pelenis, Justinas, 2022. "Adaptive Bayesian estimation of conditional discrete-continuous distributions with an application to stock market trading activity," Journal of Econometrics, Elsevier, vol. 230(1), pages 62-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengistu Assefa Wendimu & Arne Henningsen & Tomasz Gerard Czekaj, 2017. "Incentives and moral hazard: plot level productivity of factory-operated and outgrower-operated sugarcane production in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 549-560, September.
    2. George Halkos & Nickolaos Tzeremes, 2012. "Measuring German regions’ environmental efficiency: a directional distance function approach," Letters in Spatial and Resource Sciences, Springer, vol. 5(1), pages 7-16, March.
    3. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    4. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "Public sector transparency and countries’ environmental performance: A nonparametric analysis," Resource and Energy Economics, Elsevier, vol. 38(C), pages 19-37.
    5. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "Carbon dioxide emissions and governance: A nonparametric analysis for the G-20," Energy Economics, Elsevier, vol. 40(C), pages 110-118.
    6. Ichimura, Tsuyoshi & Fukuda, Daisuke, 2010. "A fast algorithm for computing least-squares cross-validations for nonparametric conditional kernel density functions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3404-3410, December.
    7. Halkos, George & Tzeremes, Nickolaos, 2011. "Regional environmental efficiency and economic growth: NUTS2 evidence from Germany, France and the UK," MPRA Paper 33698, University Library of Munich, Germany.
    8. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "Economic growth and environmental efficiency: Evidence from US regions," Economics Letters, Elsevier, vol. 120(1), pages 48-52.
    9. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    10. Man, Georg, 2014. "Political competition and economic growth: A nonlinear relationship?," European Journal of Political Economy, Elsevier, vol. 36(C), pages 287-302.
    11. Tzeremes, Nickolaos G., 2015. "Efficiency dynamics in Indian banking: A conditional directional distance approach," European Journal of Operational Research, Elsevier, vol. 240(3), pages 807-818.
    12. Daniel J. Henderson & Alexandre Olbrecht & Solomon W. Polachek, 2006. "Do Former College Athletes Earn More at Work?: A Nonparametric Assessment," Journal of Human Resources, University of Wisconsin Press, vol. 41(3).
    13. Minviel, Jean Joseph & De Witte, Kristof, 2017. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1112-1120.
    14. Hsiao, Cheng & Li, Qi & Racine, Jeffrey S., 2007. "A consistent model specification test with mixed discrete and continuous data," Journal of Econometrics, Elsevier, vol. 140(2), pages 802-826, October.
    15. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    16. Bontemps, Christophe & Racine, Jeffrey S. & Simioni, Michel, 2009. "Nonparametric vs parametric binary choice models: An empirical investigation," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49286, Agricultural and Applied Economics Association.
    17. Nicholas Kiefer & Jeffrey Racine, 2009. "The smooth Colonel meets the Reverend," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 521-533.
    18. Spyros Vliamos & Nickolaos Tzeremes, 2012. "Factors Influencing Entrepreneurial Process and Firm Start-Ups: Evidence from Central Greece," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 3(3), pages 250-264, September.
    19. Steven F. Koch & Jeffrey S. Racine, 2016. "Healthcare facility choice and user fee abolition: regression discontinuity in a multinomial choice setting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 927-950, October.
    20. Halkos, George & Sundström, Aksel & Tzeremes, Nickolaos, 2013. "Environmental performance and quality of governance: A non-parametric analysis of the NUTS 1-regions in France, Germany and the UK," MPRA Paper 48890, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:468-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.