IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v71y1999i1p67-75.html
   My bibliography  Save this article

On Maximum Entropy Characterization of Pearson's Type II and VII Multivariate Distributions

Author

Listed:
  • Zografos, K.

Abstract

In this paper a characterization is presented for Pearson's Type II and VII multivariate distributions by means of the maximum entropy principle. It is shown that within the class of multivariate distributions, that satisfy appropriate constraints expressed by mean values, the Pearson Type II and VII distributions maximize the Shannon entropy.

Suggested Citation

  • Zografos, K., 1999. "On Maximum Entropy Characterization of Pearson's Type II and VII Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 67-75, October.
  • Handle: RePEc:eee:jmvana:v:71:y:1999:i:1:p:67-75
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91824-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silviu Guiasu, 1990. "A classification of the main probability distributions by minimizing the weighted logarithmic measure of deviation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 269-279, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andai, Attila, 2009. "On the geometry of generalized Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 777-793, April.
    2. Ebrahimi, Nader & Soofi, Ehsan S. & Soyer, Refik, 2008. "Multivariate maximum entropy identification, transformation, and dependence," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1217-1231, July.
    3. Zografos, K. & Nadarajah, S., 2005. "Expressions for Rényi and Shannon entropies for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 71-84, January.
    4. Villa, Cristiano & Rubio, Francisco J., 2018. "Objective priors for the number of degrees of freedom of a multivariate t distribution and the t-copula," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 197-219.
    5. Leonenko, Nikolaj & Seleznjev, Oleg, 2010. "Statistical inference for the [epsilon]-entropy and the quadratic Rényi entropy," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1981-1994, October.
    6. Ebrahimi, Nader & Kirmani, S.N.U.A. & Soofi, Ehsan S., 2007. "Multivariate dynamic information," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 328-349, February.
    7. Castilla, Elena & Zografos, Konstantinos, 2022. "On distance-type Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Bhattacharya, Bhaskar, 2006. "Maximum entropy characterizations of the multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1272-1283, July.
    9. Contreras-Reyes, Javier E., 2014. "Asymptotic form of the Kullback–Leibler divergence for multivariate asymmetric heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 200-208.
    10. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    11. Daya K. Nagar & Saralees Nadarajah & Idika E. Okorie, 2017. "A New Bivariate Distribution with One Marginal Defined on the Unit Interval," Annals of Data Science, Springer, vol. 4(3), pages 405-420, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharya, Bhaskar, 2006. "Maximum entropy characterizations of the multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1272-1283, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:71:y:1999:i:1:p:67-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.