IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v94y2005i2p300-312.html
   My bibliography  Save this article

Monte Carlo approximation through Gibbs output in generalized linear mixed models

Author

Listed:
  • Chan, Jennifer S.K.
  • Kuk, Anthony Y.C.
  • Yam, Carrie H.K.

Abstract

Geyer (J. Roy. Statist. Soc. 56 (1994) 291) proposed Monte Carlo method to approximate the whole likelihood function. His method is limited to choosing a proper reference point. We attempt to improve the method by assigning some prior information to the parameters and using the Gibbs output to evaluate the marginal likelihood and its derivatives through a Monte Carlo approximation. Vague priors are assigned to the parameters as well as the random effects within the Bayesian framework to represent a non-informative setting. Then the maximum likelihood estimates are obtained through the Newton Raphson method. Thus, out method serves as a bridge between Bayesian and classical approaches. The method is illustrated by analyzing the famous salamander mating data by generalized linear mixed models.

Suggested Citation

  • Chan, Jennifer S.K. & Kuk, Anthony Y.C. & Yam, Carrie H.K., 2005. "Monte Carlo approximation through Gibbs output in generalized linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 300-312, June.
  • Handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:300-312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00107-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Choy & A. Smith, 1997. "Hierarchical models with scale mixtures of normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 205-221, June.
    2. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.
    2. Jennifer Chan & Wai Wan, 2011. "Bayesian approach to analysing longitudinal bivariate binary data with informative dropout," Computational Statistics, Springer, vol. 26(1), pages 121-144, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.
    2. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    3. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    4. Kakamu, Kazuhiko & Yunoue, Hideo & Kuramoto, Takashi, 2014. "Spatial patterns of flypaper effects for local expenditure by policy objective in Japan: A Bayesian approach," Economic Modelling, Elsevier, vol. 37(C), pages 500-506.
    5. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    6. Gary Bolton & Duncan Fong & Paul Mosquin, 2003. "Bayes Factors with an Application to Experimental Economics," Experimental Economics, Springer;Economic Science Association, vol. 6(3), pages 311-325, November.
    7. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    8. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    10. Moeltner, Klaus, 2019. "Bayesian nonlinear meta regression for benefit transfer," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 44-62.
    11. Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
    12. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    13. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    14. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    15. Malley, Jim & Woitek, Ulrich, 2010. "Technology shocks and aggregate fluctuations in an estimated hybrid RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1214-1232, July.
    16. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    17. Karlsson, Sune & Mazur, Stepan, 2020. "Flexible Fat-tailed Vector Autoregression," Working Papers 2020:5, Örebro University, School of Business.
    18. Holloway, Garth & Shankar, Bhavani & Rahman, Sanzidur, 2002. "Bayesian spatial probit estimation: a primer and an application to HYV rice adoption," Agricultural Economics, Blackwell, vol. 27(3), pages 383-402, November.
    19. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    20. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:300-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.