IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v89y2004i1p97-118.html
   My bibliography  Save this article

Local polynomial maximum likelihood estimation for Pareto-type distributions

Author

Listed:
  • Beirlant, Jan
  • Goegebeur, Yuri

Abstract

We discuss the estimation of the tail index of a heavy-tailed distribution when covariate information is available. The approach followed here is based on the technique of local polynomial maximum likelihood estimation. The generalized Pareto distribution is fitted locally to exceedances over a high specified threshold. The method provides nonparametric estimates of the parameter functions and their derivatives up to the degree of the chosen polynomial. Consistency and asymptotic normality of the proposed estimators will be proven under suitable regularity conditions. This approach is motivated by the fact that in some applications the threshold should be allowed to change with the covariates due to significant effects on scale and location of the conditional distributions. Using the asymptotic results we are able to derive an expression for the asymptotic mean squared error, which can be used to guide the selection of the bandwidth and the threshold. The applicability of the method will be demonstrated with a few practical examples.

Suggested Citation

  • Beirlant, Jan & Goegebeur, Yuri, 2004. "Local polynomial maximum likelihood estimation for Pareto-type distributions," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 97-118, April.
  • Handle: RePEc:eee:jmvana:v:89:y:2004:i:1:p:97-118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00125-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beirlant, Jan & Goegebeur, Yuri, 2003. "Regression with response distributions of Pareto-type," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 595-619, April.
    2. A. C. Davison & N. I. Ramesh, 2000. "Local likelihood smoothing of sample extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 191-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    2. Gardes, Laurent & Girard, Stéphane, 2008. "A moving window approach for nonparametric estimation of the conditional tail index," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2368-2388, November.
    3. Jo~ao Nicolau & Paulo M. M. Rodrigues, 2024. "A simple but powerful tail index regression," Papers 2409.13531, arXiv.org.
    4. Fontanari, Andrea & Cirillo, Pasquale & Oosterlee, Cornelis W., 2018. "From Concentration Profiles to Concentration Maps. New tools for the study of loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 13-29.
    5. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    6. Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    7. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    9. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2014. "Local robust and asymptotically unbiased estimation of conditional Pareto-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 330-355, June.
    10. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    11. Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
    2. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    3. Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
    4. Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
    5. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    6. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    7. Gardes, Laurent & Girard, Stéphane, 2008. "A moving window approach for nonparametric estimation of the conditional tail index," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2368-2388, November.
    8. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    9. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    10. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    11. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    12. He, Fengyang & Cheng, Yebin & Tong, Tiejun, 2016. "Estimation of extreme conditional quantiles through an extrapolation of intermediate regression quantiles," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 30-37.
    13. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Nicolau, João & Rodrigues, Paulo M.M. & Stoykov, Marian Z., 2023. "Tail index estimation in the presence of covariates: Stock returns’ tail risk dynamics," Journal of Econometrics, Elsevier, vol. 235(2), pages 2266-2284.
    15. Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-35, June.
    16. Alexandre Brouste & Christophe Dutang & Tom Rohmer, 2020. "Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling," Computational Statistics, Springer, vol. 35(2), pages 689-724, June.
    17. Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    18. Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
    19. Julie Carreau & Yoshua Bengio, 2004. "Estimation de densité conditionnelle lorsque l'hypothèse de normalité est insatisfaisante," CIRANO Working Papers 2004s-31, CIRANO.
    20. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:89:y:2004:i:1:p:97-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.