IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v75y2000i1p13-35.html
   My bibliography  Save this article

Multivariate Survival Functions with a Min-Stable Property

Author

Listed:
  • Joe, Harry
  • Ma, Chunsheng

Abstract

This paper introduces and studies a class of multivariate survival functions with given univariate marginal G0, called min-stable multivariate G0-distributions, which includes min-stable multivariate exponential distributions as a special case. The representation of the form of Pickands (1981) is derived, and some dependence and other properties of the class are given. The functional form of the class is G0(A), where A is a homogeneous function on n+. Conditions are obtained for G0 and A so that a proper multivariate survival function obtains. Interesting special cases are studied including the case where G0 is a Gamma distribution.

Suggested Citation

  • Joe, Harry & Ma, Chunsheng, 2000. "Multivariate Survival Functions with a Min-Stable Property," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 13-35, October.
  • Handle: RePEc:eee:jmvana:v:75:y:2000:i:1:p:13-35
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91891-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    2. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    3. W. R. van Zwet, 1964. "Convex transformations: A new approach to slcewness and kurtosis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 18(4), pages 433-441, December.
    4. Joe, Harry & Hu, Taizhong, 1996. "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 240-265, May.
    5. Joe, H., 1993. "Parametric Families of Multivariate Distributions with Given Margins," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 262-282, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    2. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    2. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    3. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    4. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    5. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    6. Ngo Thai HUNG, 2020. "Conditional dependence between oil prices and CEE stock markets: a copula-GARCH approach Abstract: This study investigates both the constant and time-varying conditional dependency between crude oil a," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 11, pages 62-86, June.
    7. Elena Di Bernardino & Didier Rullière, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Working Papers hal-01147778, HAL.
    8. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    9. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    10. Candida Geerdens & Gerda Claeskens & Paul Janssen, 2016. "Copula based flexible modeling of associations between clustered event times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 363-381, July.
    11. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    12. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.
    13. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    14. Ki-Hong Choi & Insin Kim, 2021. "Co-Movement between Tourist Arrivals of Inbound Tourism Markets in South Korea: Applying the Dynamic Copula Method Using Secondary Time Series Data," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    15. Barthel, Nicole & Geerdens, Candida & Killiches, Matthias & Janssen, Paul & Czado, Claudia, 2018. "Vine copula based likelihood estimation of dependence patterns in multivariate event time data," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 109-127.
    16. Bai, Xiwen & Lam, Jasmine Siu Lee, 2019. "A copula-GARCH approach for analyzing dynamic conditional dependency structure between liquefied petroleum gas freight rate, product price arbitrage and crude oil price," Energy Economics, Elsevier, vol. 78(C), pages 412-427.
    17. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    18. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
    19. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    20. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:75:y:2000:i:1:p:13-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.