IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v74y2000i2p193-221.html
   My bibliography  Save this article

M-Estimators Converging to a Stable Limit

Author

Listed:
  • Arcones, Miguel A.

Abstract

We discuss the asymptotic linearization of multivariate M-estimators, when the limit distribution is stable. We consider two different types of kernels: VC and bracketing. When applied to the case of normal limits, our work improves the known results to obtain the limit distribution of M-estimators. We give weak conditions for the asymptotic normality of M-estimators over differentiable kernels. To obtain these results, we present an inequality on empirical processes satisfying a bracketing condition with respect to a norm smaller than the L2 norm.

Suggested Citation

  • Arcones, Miguel A., 2000. "M-Estimators Converging to a Stable Limit," Journal of Multivariate Analysis, Elsevier, vol. 74(2), pages 193-221, August.
  • Handle: RePEc:eee:jmvana:v:74:y:2000:i:2:p:193-221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91886-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(3), pages 295-313, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volker Krätschmer & Henryk Zähle, 2017. "Statistical Inference for Expectile-based Risk Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 425-454, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    2. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    3. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    4. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    5. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    6. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    7. Edvard Bakhitov, 2020. "Frequentist Shrinkage under Inequality Constraints," Papers 2001.10586, arXiv.org.
    8. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    9. Minxian Yang, 2014. "Normality of Posterior Distribution Under Misspecification and Nonsmoothness, and Bayes Factor for Davies' Problem," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 305-336, June.
    10. Ketz, Philipp, 2018. "Subvector inference when the true parameter vector may be near or at the boundary," Journal of Econometrics, Elsevier, vol. 207(2), pages 285-306.
    11. Rebafka Tabea & Roueff François & Souloumiac Antoine, 2010. "A Corrected Likelihood Approach for the Nonlinear Transformation Model with Application to Fluorescence Lifetime Measurements Using Exponential Mixtures," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-34, March.
    12. Tae-Hwan Kim & Halbert White, 2003. "Estimation, Inference, And Specification Testing For Possibly Misspecified Quantile Regression," Advances in Econometrics, in: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, pages 107-132, Emerald Group Publishing Limited.
    13. Xiaohong Chen & Zhijie Xiao & Bo Wang, 2020. "Copula-Based Time Series With Filtered Nonstationarity," Cowles Foundation Discussion Papers 2242, Cowles Foundation for Research in Economics, Yale University.
    14. Tim Bollerslev & Jia Li & Leonardo Salim Saker Chaves, 2021. "Generalized Jump Regressions for Local Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1015-1025, October.
    15. Koning, A.J., 1999. "Goodness of fit for the constancy of a classical statistical model over time," Econometric Institute Research Papers EI 9959-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Bera Anil K. & Bilias Yannis & Yoon Mann J. & Taşpınar Süleyman & Doğan Osman, 2020. "Adjustments of Rao’s Score Test for Distributional and Local Parametric Misspecifications," Journal of Econometric Methods, De Gruyter, vol. 9(1), pages 1-29, January.
    17. Andrews, Donald W. K. & Fair, Ray C., 1987. "Inference in Econometric Models with Structural Change," Working Papers 636, California Institute of Technology, Division of the Humanities and Social Sciences.
    18. Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
    19. Cho, Jin Seo & White, Halbert, 2018. "Directionally Differentiable Econometric Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1101-1131, October.
    20. Hosoya, Yuzo, 1996. "The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence," Journal of Econometrics, Elsevier, vol. 73(1), pages 217-236, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:74:y:2000:i:2:p:193-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.