IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v73y2000i2p282-283.html
   My bibliography  Save this article

A Note on the Multivariate Normal Hazard

Author

Listed:
  • Ma, Chunsheng

Abstract

For the multivariate log-concave distribution, it is shown that the hazard gradient is increasing in the sense of Johnson and Kotz. As an immediate consequence, the result of Gupta and Gupta (1997) on the multivariate normal hazard is obtained.

Suggested Citation

  • Ma, Chunsheng, 2000. "A Note on the Multivariate Normal Hazard," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 282-283, May.
  • Handle: RePEc:eee:jmvana:v:73:y:2000:i:2:p:282-283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91877-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Pushpa L. & Gupta, Ramesh C., 1997. "On the Multivariate Normal Hazard," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 64-73, July.
    2. Johnson, N. L. & Kotz, Samuel, 1975. "A vector multivariate hazard rate," Journal of Multivariate Analysis, Elsevier, vol. 5(1), pages 53-66, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramesh Gupta & N. Balakrishnan, 2012. "Log-concavity and monotonicity of hazard and reversed hazard functions of univariate and multivariate skew-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 181-191, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colangelo Antonio, 2005. "Multivariate hazard orderings of discrete random vectors," Economics and Quantitative Methods qf05010, Department of Economics, University of Insubria.
    2. M. Shafaei Noughabi & M. Kayid, 2019. "Bivariate quantile residual life: a characterization theorem and statistical properties," Statistical Papers, Springer, vol. 60(6), pages 2001-2012, December.
    3. P. Sankaran & K. Jayakumar, 2008. "On proportional odds models," Statistical Papers, Springer, vol. 49(4), pages 779-789, October.
    4. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. S.M. Sunoj & N. Unnikrishnan Nair, 1999. "Bivariate distributions with weighted marginals and reliablity modelling," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 118-126.
    6. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    7. Belzunce, Félix & Mercader, José A. & Ruiz, José M., 2003. "Multivariate aging properties of epoch times of nonhomogeneous processes," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 335-350, February.
    8. Indranil Ghosh & Osborne Banks, 2021. "A Study of Bivariate Generalized Pareto Distribution and its Dependence Structure Among Model Parameters," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 575-604, November.
    9. Hu, Taizhong & Khaledi, Baha-Eldin & Shaked, Moshe, 2003. "Multivariate hazard rate orders," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 173-189, January.
    10. Nair, N. Unnikrishnan & Sankaran, P.G., 2008. "Characterizations of multivariate life distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2096-2107, October.
    11. Gupta, Ramesh C., 2001. "Reliability Studies of Bivariate Distributions with Pareto Conditionals," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 214-225, February.
    12. N. Nair & P. Sankaran, 2014. "Modelling lifetimes with bivariate Schur-constant equilibrium distributions from renewal theory," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 331-349, October.
    13. Paduthol Godan Sankaran & Narayanan Unnikrishnan Nair, 2004. "Partial moments for bivariate distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 339-351.
    14. Navarro, Jorge, 2008. "Characterizations using the bivariate failure rate function," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1349-1354, September.
    15. Shikhar Tyagi, 2024. "On bivariate Teissier model using Copula: dependence properties, and case studies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2483-2499, June.
    16. N. Unnikrishnan Nair & P. G. Sankaran & Preethi John, 2018. "Modelling bivariate lifetime data using copula," METRON, Springer;Sapienza Università di Roma, vol. 76(2), pages 133-153, August.
    17. S. M. Sunoj & N. Vipin, 2019. "Some properties of conditional partial moments in the context of stochastic modelling," Statistical Papers, Springer, vol. 60(6), pages 1971-1999, December.
    18. Debasis Kundu, 2022. "Bivariate Semi-parametric Singular Family of Distributions and its Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 846-872, November.
    19. Zhang, Lin & Chen, Xiaohui & Khatab, Abdelhakim & An, Youjun, 2022. "Optimizing imperfect preventive maintenance in multi-component repairable systems under s-dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    20. Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "On a new NBUE property in multivariate sense: An application," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3283-3294, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:73:y:2000:i:2:p:282-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.