IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v66y1998i1p22-37.html
   My bibliography  Save this article

On the Geometrical Convergence of Gibbs Sampler inRd

Author

Listed:
  • Hwang, Chii-Ruey
  • Sheu, Shuenn-Jyi

Abstract

The geometrical convergence of the Gibbs sampler for simulating a probability distribution inRdis proved. The distribution has a density which is a bounded perturbation of a log-concave function and satisfies some growth conditions. The analysis is based on a representation of the Gibbs sampler and some powerful results from the theory of Harris recurrent Markov chains.

Suggested Citation

  • Hwang, Chii-Ruey & Sheu, Shuenn-Jyi, 1998. "On the Geometrical Convergence of Gibbs Sampler inRd," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 22-37, July.
  • Handle: RePEc:eee:jmvana:v:66:y:1998:i:1:p:22-37
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91735-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amit, Y. & Grenander, U., 1991. "Comparing sweep strategies for stochastic relaxation," Journal of Multivariate Analysis, Elsevier, vol. 37(2), pages 197-222, May.
    2. Amit, Yali, 1991. "On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 82-99, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, G. & Zhang, Q. & Badowski, G., 2000. "Singularly Perturbed Markov Chains: Convergence and Aggregation," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 208-229, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosenthal, Jeffrey S., 1996. "Markov chain convergence: From finite to infinite," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 55-72, March.
    2. Yuen, Wai Kong, 2000. "Applications of geometric bounds to the convergence rate of Markov chains on," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 1-23, May.
    3. Roberto Leon-Gonzalez, "undated". "Data Augmentation in Limited-Dependent Variable Models," Discussion Papers 02/09, Department of Economics, University of York.
    4. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    5. Shephard, N. & Pitt, M.K., 1995. "Likelihood Analysis of Non-Gaussian Parameter-Driven Models," Economics Papers 108, Economics Group, Nuffield College, University of Oxford.
    6. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    7. Levine, Richard A. & Casella, George, 2006. "Optimizing random scan Gibbs samplers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2071-2100, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:66:y:1998:i:1:p:22-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.