IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v65y1998i2p209-227.html
   My bibliography  Save this article

The Hilbert Kernel Regression Estimate

Author

Listed:
  • Devroye, Luc
  • Györfi, Laszlo
  • Krzyzak, Adam

Abstract

Let (X, Y) be an d--valued regression pair, whereXhas a density andYis bounded. Ifni.i.d. samples are drawn from this distribution, the Nadaraya-Watson kernel regression estimate in dwith Hilbert kernelK(x)=1/||x||dis shown to converge weakly for all such regression pairs. We also show that strong convergence cannot be obtained. This is particularly interesting as this regression estimate does not have a smoothing parameter.

Suggested Citation

  • Devroye, Luc & Györfi, Laszlo & Krzyzak, Adam, 1998. "The Hilbert Kernel Regression Estimate," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 209-227, May.
  • Handle: RePEc:eee:jmvana:v:65:y:1998:i:2:p:209-227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91725-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta Horvath & Gábor Lugosi, 1996. "A data-dependent skeleton estimate and a scale-sensitive dimension for classification," Economics Working Papers 199, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devroye, Luc & Krzyzak, Adam, 2002. "New Multivariate Product Density Estimators," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 88-110, July.
    2. Devroye, Luc & Krzyzak, Adam, 1999. "On the Hilbert kernel density estimate," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 299-308, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojirsheibani, Majid, 2001. "An iterated classification rule based on auxiliary pseudo-predictors," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 125-138, December.
    2. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    3. Camerlenghi, F. & Capasso, V. & Villa, E., 2014. "On the estimation of the mean density of random closed sets," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 65-88.
    4. Mojirsheibani, Majid, 2002. "An Almost Surely Optimal Combined Classification Rule," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 28-46, April.
    5. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    6. Fischer, Aurélie, 2010. "Quantization and clustering with Bregman divergences," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2207-2221, October.
    7. Boumaza, Rachid, 2004. "Discriminant analysis with independently repeated multivariate measurements: an L2 approach," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 823-843, November.
    8. Biau, Gérard & Devroye, Luc, 2005. "Density estimation by the penalized combinatorial method," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 196-208, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:65:y:1998:i:2:p:209-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.