IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v202y2024ics0047259x24000101.html
   My bibliography  Save this article

High-dimensional nonconvex LASSO-type M-estimators

Author

Listed:
  • Beyhum, Jad
  • Portier, François

Abstract

A theory is developed to examine the convergence properties of ℓ1-norm penalized high-dimensional M-estimators, with nonconvex risk and unrestricted domain. Under high-level conditions, the estimators are shown to attain the rate of convergence s0log(nd)/n, where s0 is the number of nonzero coefficients of the parameter of interest. Sufficient conditions for our main assumptions are then developed and finally used in several examples including robust linear regression, binary classification and nonlinear least squares.

Suggested Citation

  • Beyhum, Jad & Portier, François, 2024. "High-dimensional nonconvex LASSO-type M-estimators," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000101
    DOI: 10.1016/j.jmva.2024.105303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lan & Kai, Bo & Heuchenne, Cedric & Tsai, Chih- Ling, 2013. "Penalized profiled semiparametric estimating functions," LIDAM Reprints ISBA 2013042, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    3. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    4. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    5. Caner, Mehmet, 2023. "Generalized linear models with structured sparsity estimators," Journal of Econometrics, Elsevier, vol. 236(2).
    6. repec:jss:jstsof:33:i01 is not listed on IDEAS
    7. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    8. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    9. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
    10. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    11. Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
    12. Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.
    13. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    14. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    15. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    16. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    17. Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
    18. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    19. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.
    20. Yuan Jiang & Yunxiao He & Heping Zhang, 2016. "Variable Selection With Prior Information for Generalized Linear Models via the Prior LASSO Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 355-376, March.
    21. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.