IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v192y2022ics0047259x22000768.html
   My bibliography  Save this article

Canonical quantile regression

Author

Listed:
  • Portnoy, Stephen

Abstract

In using multiple regression methods for prediction, one often considers the linear combination of explanatory variables as an index. Seeking a single such index when here are multiple responses is rather more complicated. One classical approach is to use the coefficients from the leading Canonical Correlation. However, methods based on variances are unable to disaggregate responses by quantile effects, lack robustness, and rely on normal assumptions for inference. An alternative canonical regression quantile (CanRQ) approach seeks to find the linear combination of explanatory variables that best predicts the τth quantile of the best linear combination of response variables. Applying this “regression” approach more generally, subsequent linear combinations are chosen to explain what earlier CanRQ components failed to explain. While numerous technical issues need to be addressed, the major methodological issue concerns directionality: a quantile analysis requires that the notion of a larger or smaller response be well-defined. To address this issue, the sign of at least one response coefficient will be assumed to be non-negative. CanRQ results can be quite different from those of classical canonical correlation, and can offer the kind of improvements offered by regression quantiles in linear models.

Suggested Citation

  • Portnoy, Stephen, 2022. "Canonical quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000768
    DOI: 10.1016/j.jmva.2022.105071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    2. Parker, Thomas, 2019. "Asymptotic inference for the constrained quantile regression process," Journal of Econometrics, Elsevier, vol. 213(1), pages 174-189.
    3. Giuseppe Cavaliere & Iliyan Georgiev, 2020. "Inference Under Random Limit Bootstrap Measures," Econometrica, Econometric Society, vol. 88(6), pages 2547-2574, November.
    4. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    2. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    3. Ahmed Khalif & Massimiliano Caporin & Michele Costola & Shawkat Hammoudeh, 2021. "Systemic Risk for Financial Institutions in the Major Petroleum-based Economies: The Role of Oil," The Energy Journal, , vol. 42(6), pages 247-274, November.
    4. Effiong, Ekpeno L., 2016. "Nonlinear Dependence between Stock Prices and Exchange Rate in Nigeria," MPRA Paper 74336, University Library of Munich, Germany.
    5. Gerard, Francois & Rokkanen, Miikka & Rothe, Christoph, 2015. "Identification and Inference in Regression Discontinuity Designs with a Manipulated Running Variable," IZA Discussion Papers 9604, Institute of Labor Economics (IZA).
    6. Marques, André M. & Lima, Gilberto Tadeu, 2022. "Testing for Granger causality in quantiles between the wage share in income and productive capacity utilization," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 290-312.
    7. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
    8. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    9. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    10. Buiter, Willem H., 1986. "Granger Causality and Policy Ineffectiveness: A Rejoinder," CEPR Discussion Papers 126, C.E.P.R. Discussion Papers.
    11. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    12. Ghosh, sudeshna, 2017. "Education Attainment Forecasting and Economic Inequality United States," MPRA Paper 89712, University Library of Munich, Germany.
    13. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    14. Fali Huang & Myoung-Jae Lee, 2010. "Dynamic treatment effect analysis of TV effects on child cognitive development," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(3), pages 392-419.
    15. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    16. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    17. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    18. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    19. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    20. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.