IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v190y2022ics0047259x22000252.html
   My bibliography  Save this article

Diagonal nonlinear transformations preserve structure in covariance and precision matrices

Author

Listed:
  • Morrison, Rebecca
  • Baptista, Ricardo
  • Basor, Estelle

Abstract

For a multivariate normal distribution, the sparsity of the covariance and precision matrices encodes complete information about independence and conditional independence properties. For general distributions, the covariance and precision matrices reveal correlations and so-called partial correlations between variables, but these do not, in general, have any correspondence with respect to independence properties. In this paper, we prove that, for a certain class of non-Gaussian distributions, these correspondences still hold, exactly for the covariance and approximately for the precision. The distributions—sometimes referred to as “nonparanormal”—are given by diagonal transformations of multivariate normal random variables. We provide several analytic and numerical examples illustrating these results.

Suggested Citation

  • Morrison, Rebecca & Baptista, Ricardo & Basor, Estelle, 2022. "Diagonal nonlinear transformations preserve structure in covariance and precision matrices," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000252
    DOI: 10.1016/j.jmva.2022.104983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.104983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    2. Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    3. Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
    4. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    5. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    6. Lidan Tan & Khai X. Chiong & Hyungsik Roger Moon, 2018. "Estimation of High-Dimensional Seemingly Unrelated Regression Models," Papers 1811.05567, arXiv.org.
    7. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    8. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    9. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors to Improve Covariance Matrix Estimation," Papers 2107.05201, arXiv.org, revised Oct 2021.
    10. Ata Kabán & Efstratios Palias, 2024. "A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-17, December.
    11. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    12. Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
    13. Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    14. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    15. Brownlees, Christian & Mesters, Geert, 2021. "Detecting granular time series in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
    16. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    17. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    18. Rasoul Lotfi & Davood Shahsavani & Mohammad Arashi, 2022. "Classification in High Dimension Using the Ledoit–Wolf Shrinkage Method," Mathematics, MDPI, vol. 10(21), pages 1-13, November.
    19. Monika Bours & Ansgar Steland, 2021. "Large‐sample approximations and change testing for high‐dimensional covariance matrices of multivariate linear time series and factor models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 610-654, June.
    20. Wu, Zeyu & Wang, Cheng, 2022. "Limiting spectral distribution of large dimensional Spearman’s rank correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.