Kernel variable selection for multicategory support vector machines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2021.104800
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chong Zhang & Yufeng Liu, 2014. "Multicategory angle-based large-margin classification," Biometrika, Biometrika Trust, vol. 101(3), pages 625-640.
- Fan, Junliang & Wu, Lifeng & Ma, Xin & Zhou, Hanmi & Zhang, Fucang, 2020. "Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions," Renewable Energy, Elsevier, vol. 145(C), pages 2034-2045.
- Yoonkyung Lee & Yuwon Kim & Sangjun Lee & Ja-Yong Koo, 2006. "Structured multicategory support vector machines with analysis of variance decomposition," Biometrika, Biometrika Trust, vol. 93(3), pages 555-571, September.
- Lee, Yoonkyung & Lin, Yi & Wahba, Grace, 2004. "Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 67-81, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Fu, Sheng & Zhang, Sanguo & Liu, Yufeng, 2018. "Adaptively weighted large-margin angle-based classifiers," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 282-299.
- Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
- Zhilan Lou & Jun Shao & Menggang Yu, 2018. "Optimal treatment assignment to maximize expected outcome with multiple treatments," Biometrics, The International Biometric Society, vol. 74(2), pages 506-516, June.
- Park, Changyi & Koo, Ja-Yong & Kim, Peter T. & Lee, Jae Won, 2008. "Stepwise feature selection using generalized logistic loss," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3709-3718, March.
- Fan, Yiwei & Zhao, Junlong, 2022. "Safe sample screening rules for multicategory angle-based support vector machines," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Yang, Yi & Guo, Yuxuan & Chang, Xiangyu, 2021. "Angle-based cost-sensitive multicategory classification," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Chong Zhang & Yufeng Liu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 44-46, March.
- Yoonkyung Lee, 2014. "Comments on: Support vector machines maximizing geometric margins for multi-class classification," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 852-855, October.
- Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Chong Zhang & Yufeng Liu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 44-46, March.
- Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
- Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
- Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Maximilian Alber & Julian Zimmert & Urun Dogan & Marius Kloft, 2017. "Distributed optimization of multi-class SVMs," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
- Engin Tas & Ayca Hatice Atli, 2024. "Stock Price Ranking by Learning Pairwise Preferences," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 513-528, February.
- Gardner-Lubbe, Sugnet, 2016. "A triplot for multiclass classification visualisation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 20-32.
- Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
- Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
More about this item
Keywords
Multicategory classification; Statistical learning; Variable selection consistency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.