IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i7p3709-3718.html
   My bibliography  Save this article

Stepwise feature selection using generalized logistic loss

Author

Listed:
  • Park, Changyi
  • Koo, Ja-Yong
  • Kim, Peter T.
  • Lee, Jae Won

Abstract

Microarray experiments have raised challenging questions such as how to make an accurate identification of a set of marker genes responsible for various cancers. In statistics, this specific task can be posed as the feature selection problem. Since a support vector machine can deal with a vast number of features, it has gained wide spread use in microarray data analysis. We propose a stepwise feature selection using the generalized logistic loss that is a smooth approximation of the usual hinge loss. We compare the proposed method with the support vector machine with recursive feature elimination for both real and simulated datasets. It is illustrated that the proposed method can improve the quality of feature selection through standardization while the method retains similar predictive performance compared with the recursive feature elimination.

Suggested Citation

  • Park, Changyi & Koo, Ja-Yong & Kim, Peter T. & Lee, Jae Won, 2008. "Stepwise feature selection using generalized logistic loss," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3709-3718, March.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3709-3718
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00470-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoonkyung Lee & Yuwon Kim & Sangjun Lee & Ja-Yong Koo, 2006. "Structured multicategory support vector machines with analysis of variance decomposition," Biometrika, Biometrika Trust, vol. 93(3), pages 555-571, September.
    2. Lee, Yoonkyung & Lin, Yi & Wahba, Grace, 2004. "Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 67-81, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    2. Park, Beomjin & Park, Changyi, 2021. "Kernel variable selection for multicategory support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    3. Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    4. Zhilan Lou & Jun Shao & Menggang Yu, 2018. "Optimal treatment assignment to maximize expected outcome with multiple treatments," Biometrics, The International Biometric Society, vol. 74(2), pages 506-516, June.
    5. Yoonkyung Lee, 2014. "Comments on: Support vector machines maximizing geometric margins for multi-class classification," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 852-855, October.
    6. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    7. Maximilian Alber & Julian Zimmert & Urun Dogan & Marius Kloft, 2017. "Distributed optimization of multi-class SVMs," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    8. Engin Tas & Ayca Hatice Atli, 2024. "Stock Price Ranking by Learning Pairwise Preferences," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 513-528, February.
    9. Gardner-Lubbe, Sugnet, 2016. "A triplot for multiclass classification visualisation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 20-32.
    10. Fu, Sheng & Zhang, Sanguo & Liu, Yufeng, 2018. "Adaptively weighted large-margin angle-based classifiers," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 282-299.
    11. van den Burg, G.J.J. & Groenen, P.J.F., 2014. "GenSVM: A Generalized Multiclass Support Vector Machine," Econometric Institute Research Papers EI 2014-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Sarra Houidi & Dominique Fourer & François Auger & Houda Ben Attia Sethom & Laurence Miègeville, 2021. "Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning," Energies, MDPI, vol. 14(9), pages 1-28, May.
    13. Lee, Sangjun & Park, Changyi & Koo, Ja-Yong, 2011. "Feature selection in the Laplacian support vector machine," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 567-577, January.
    14. Liu, Yufeng & Helen Zhang, Hao & Park, Cheolwoo & Ahn, Jeongyoun, 2007. "Support vector machines with adaptive Lq penalty," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6380-6394, August.
    15. Keiji Tatsumi & Tetsuzo Tanino, 2014. "Support vector machines maximizing geometric margins for multi-class classification," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 815-840, October.
    16. Hossein Baloochian & Hamid Reza Ghaffary, 2019. "Multiclass Classification Based on Multi-criteria Decision-making," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 140-151, April.
    17. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    18. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
    19. Chakraborty, Sounak & Guo, Ruixin, 2011. "A Bayesian hybrid Huberized support vector machine and its applications in high-dimensional medical data," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1342-1356, March.
    20. Abramovich, Felix & Pensky, Marianna, 2019. "Classification with many classes: Challenges and pluses," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3709-3718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.