IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v188y2023ics016794732300138x.html
   My bibliography  Save this article

Bayesian modeling of spatial integer-valued time series

Author

Listed:
  • Chen, Cathy W.S.
  • Chen, Chun-Shu
  • Hsiung, Mo-Hua

Abstract

Many infectious diseases spread through person-to-person contact, either directly or indirectly. The proposal incorporates spatial-temporal patterns into multivariate integer-valued GARCH models with either a generalized Poisson distribution or zero-inflated generalized Poisson distribution in order to describe these features of the data. By considering the neighboring locations of the target series, the set-up incorporates a flexible and continuous conceptualization of distance to present the spatial components, thereby highlighting for the non-separability of space and time. Such an approach eliminates the need to pre-assign a spatial weight matrix. Newly designed models are utilized to investigate time-series counts of infectious diseases, enabling inference, prediction, and model selection within a Bayesian framework through Markov chain Monte Carlo (MCMC) algorithms. As an illustration, design simulation studies and multivariate weekly dengue cases are scrutinized for the performance of the Bayesian methods. The proposed models successfully capture the characteristics of spatial dependency, over-dispersion, and a large portion of zeros, providing a comprehensive model for the observed phenomena in the data.

Suggested Citation

  • Chen, Cathy W.S. & Chen, Chun-Shu & Hsiung, Mo-Hua, 2023. "Bayesian modeling of spatial integer-valued time series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:csdana:v:188:y:2023:i:c:s016794732300138x
    DOI: 10.1016/j.csda.2023.107827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732300138X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    3. Chen, Cathy W.S. & Liu, Feng-Chi & Pingal, Aljo Clair, 2023. "Integer-valued transfer function models for counts that show zero inflation," Statistics & Probability Letters, Elsevier, vol. 193(C).
    4. Cathy W. S. Chen & Sangyeol Lee & K. Khamthong, 2021. "Bayesian inference of nonlinear hysteretic integer-valued GARCH models for disease counts," Computational Statistics, Springer, vol. 36(1), pages 261-281, March.
    5. Xu, Hai-Yan & Xie, Min & Goh, Thong Ngee & Fu, Xiuju, 2012. "A model for integer-valued time series with conditional overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4229-4242.
    6. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    7. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer‐Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    8. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.
    9. Gupta, Pushpa L. & Gupta, Ramesh C. & Tripathi, Ram C., 1996. "Analysis of zero-adjusted count data," Computational Statistics & Data Analysis, Elsevier, vol. 23(2), pages 207-218, December.
    10. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
    11. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.
    12. Youngmi Lee & Sangyeol Lee & Dag Tjøstheim, 2018. "Asymptotic normality and parameter change test for bivariate Poisson INGARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 52-69, March.
    13. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    14. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
    15. Lee, Sangyeol & Kim, Dongwon & Kim, Byungsoo, 2023. "Modeling and inference for multivariate time series of counts based on the INGARCH scheme," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    16. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    17. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cathy W. S. Chen & Sangyeol Lee & K. Khamthong, 2021. "Bayesian inference of nonlinear hysteretic integer-valued GARCH models for disease counts," Computational Statistics, Springer, vol. 36(1), pages 261-281, March.
    2. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.
    3. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    4. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    5. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    6. Luis E. Nieto-Barajas, 2022. "Dependence on a collection of Poisson random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 21-39, March.
    7. Debaly, Zinsou Max & Truquet, Lionel, 2021. "A note on the stability of multivariate non-linear time series with an application to time series of counts," Statistics & Probability Letters, Elsevier, vol. 179(C).
    8. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    9. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    10. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    12. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    13. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    14. Lee, Sangyeol & Kim, Dongwon & Kim, Byungsoo, 2023. "Modeling and inference for multivariate time series of counts based on the INGARCH scheme," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    15. William Kengne, 2023. "On consistency for time series model selection," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 437-458, July.
    16. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    17. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    18. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.
    19. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    20. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:188:y:2023:i:c:s016794732300138x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.