IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v175y2020ics0047259x18303762.html
   My bibliography  Save this article

Model specification and selection for multivariate time series

Author

Listed:
  • Bhansali, Rajendra J.

Abstract

Three major difficulties are identified with an established echelon form approach (see Hannan (1987)) to specifying a Vector Autoregressive Moving Average, VARMA, model for an observed time series. A family of state space representations, valid for each integer, h, is introduced, and collectively referred to as multistep state space representations. This family includes as its special case, with h=0, a state space representation introduced earlier by Akaike (1974), and, with h=1, that introduced by Cooper and Wood (1982). Appropriate generalizations of the notions of minimality, McMillan degree, left matrix fraction description and Kronecker indices, as applicable individually to each member of this family, are presented. The reverse echelon form and state space representation corresponding to the Kronecker indices for each h are derived, and the former illustrated with three examples of standard VARMA processes. The question of how the presence of zero constraints on the coefficients of a reverse echelon form may be detected solely from an inspection of the Kronecker indices is examined. A canonical correlation procedure proposed originally by Akaike (1976) for h=0 is considered for estimating the Kronecker indices with each h. The efficacy of the estimation procedure is investigated by a simulation study. A procedure is suggested for implementing the new approach introduced in this paper with an observed time series, and three different applications of this approach are outlined. This approach is also related to some of its alternatives, including the Kronecker invariants of Poskitt (1992) and the scalar component approach of Tiao and Tsay (1989).

Suggested Citation

  • Bhansali, Rajendra J., 2020. "Model specification and selection for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x18303762
    DOI: 10.1016/j.jmva.2019.104539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18303762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruey S. Tsay, 1989. "Identifying Multivariate Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(4), pages 357-372, July.
    2. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    3. R. Bhansali, 1996. "Asymptotically efficient autoregressive model selection for multistep prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 577-602, September.
    4. D. Piccolo & G. Tunnicliffe Wilson, 1984. "A Unified Approach To Arma Model Identification And Preliminary Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(3), pages 183-204, May.
    5. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    6. D. M. Cooper & E. F. Wood, 1982. "Identifying Multivariate Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(3), pages 153-164, May.
    7. Tsay, Ruey S, 1989. "Parsimonious Parameterization of Vector Autoregressive Moving Average Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 327-341, July.
    8. K. L. Vaninskii & A. M. Yaglom, 1990. "Stationary Processes With A Finite Number Of Non‐Zero Canonical Correlations Between Future And Past," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 361-375, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DUFOUR, Jean-Marie & TAREK, Jouini, 2005. "Asymptotic Distribution of a Simple Linear Estimator for VARMA Models in Echelon Form," Cahiers de recherche 2005-09, Universite de Montreal, Departement de sciences economiques.
    2. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    3. Jean-Marie Dufour & Tarek Jouini, 2011. "Asymptotic Distributions for Some Quasi-Efficient Estimators in Echelon VARMA Models," CIRANO Working Papers 2011s-25, CIRANO.
    4. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    5. Melard, Guy & Roy, Roch & Saidi, Abdessamad, 2006. "Exact maximum likelihood estimation of structured or unit root multivariate time series models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2958-2986, July.
    6. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    7. George Athanasopoulos & D. Poskitt & Farshid Vahid, 2012. "Two Canonical VARMA Forms: Scalar Component Models Vis-à-Vis the Echelon Form," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 60-83.
    8. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    9. Celina Pestano & Concepción González, 1998. "A new approach in multivariate time series specification," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 4(3), pages 229-242, August.
    10. Dufour, Jean-Marie & Tessier, David, 1997. "La causalité entre la monnaie et le revenu : une analyse fondée sur un modèle VARMA-échelon," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 351-366, mars-juin.
    11. Yu‐Pin Hu & Rouh‐Jane Chou, 2004. "On The Peña–Box Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 811-830, November.
    12. Antonella Cavallo & Antonio Ribba, 2017. "Measuring the Effects of Oil Price and Euro-area Shocks on CEECs Business Cycles," Department of Economics 0111, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    13. Evans, Charles L. & Marshall, David A., 2007. "Economic determinants of the nominal treasury yield curve," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1986-2003, October.
    14. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    15. Zijun Wang & Andrew J. Rettenmaier, 2008. "Deficits, Explicit Debt, Implicit Debt, and Interest Rates: Some Empirical Evidence," Southern Economic Journal, John Wiley & Sons, vol. 75(1), pages 208-222, July.
    16. Cornand, Camille & Gandré, Pauline & Gimet, Céline, 2016. "Increase in home bias in the Eurozone debt crisis: The role of domestic shocks," Economic Modelling, Elsevier, vol. 53(C), pages 445-469.
    17. Keen Meng Choy & Hwee Kwan Chow, 2004. "Forecasting the Global Electronics Cycle with Leading Indicators: A VAR Approach," Econometric Society 2004 Australasian Meetings 223, Econometric Society.
    18. Miescu, Mirela & Rossi, Raffaele, 2021. "COVID-19-induced shocks and uncertainty," European Economic Review, Elsevier, vol. 139(C).
    19. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    20. Summers, Peter M., 2001. "Forecasting Australia's economic performance during the Asian crisis," International Journal of Forecasting, Elsevier, vol. 17(3), pages 499-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x18303762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.