IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v173y2019icp685-703.html
   My bibliography  Save this article

Quantization and clustering on Riemannian manifolds with an application to air traffic analysis

Author

Listed:
  • Le Brigant, Alice
  • Puechmorel, Stéphane

Abstract

The goal of quantization is to find the best approximation of a probability distribution by a discrete measure with finite support. When dealing with empirical distributions, this boils down to finding the best summary of the data by a smaller number of points, and automatically yields a K-means-type clustering. In this paper, we introduce Competitive Learning Riemannian Quantization (CLRQ), an online quantization algorithm that applies when the data does not belong to a vector space, but rather a Riemannian manifold. It can be seen as a density approximation procedure as well as a clustering method. Compared to many clustering algorithms, it requires few distance computations, which is particularly computationally advantageous in the manifold setting. We prove its convergence and show simulated examples on the sphere and the hyperbolic plane. We also provide an application to real data by using CLRQ to create summaries of images of covariance matrices estimated from air traffic images. These summaries are representative of the air traffic complexity and yield clusterings of the airspaces into zones that are homogeneous with respect to that criterion. They can then be compared using discrete optimal transport and be further used as inputs of a machine learning algorithm or as indexes in a traffic database.

Suggested Citation

  • Le Brigant, Alice & Puechmorel, Stéphane, 2019. "Quantization and clustering on Riemannian manifolds with an application to air traffic analysis," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 685-703.
  • Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:685-703
    DOI: 10.1016/j.jmva.2019.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18303361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cook, Andrew & Blom, Henk A.P. & Lillo, Fabrizio & Mantegna, Rosario Nunzio & Miccichè, Salvatore & Rivas, Damián & Vázquez, Rafael & Zanin, Massimiliano, 2015. "Applying complexity science to air traffic management," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 149-158.
    2. Elsa Cazelles & Vivien Seguy & Jérémie Bigot & Marco Cuturi & Nicolas Papadakis, 2017. "Log-PCA versus Geodesic PCA of histograms in the Wasserstein space," Working Papers 2017-85, Center for Research in Economics and Statistics.
    3. Lovric, Miroslav & Min-Oo, Maung & Ruh, Ernst A., 2000. "Multivariate Normal Distributions Parametrized as a Riemannian Symmetric Space," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 36-48, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sana Rebbah & Florence Nicol & Stéphane Puechmorel, 2019. "The Geometry of the Generalized Gamma Manifold and an Application to Medical Imaging," Mathematics, MDPI, vol. 7(8), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Micchelli, Charles & Noakes, Lyle, 2005. "Rao distances," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 97-115, January.
    2. Florian Gunsilius & Meng Hsuan Hsieh & Myung Jin Lee, 2022. "Tangential Wasserstein Projections," Papers 2207.14727, arXiv.org, revised Aug 2022.
    3. Sun, Xiaoqian & Wandelt, Sebastian & Hansen, Mark & Li, Ang, 2017. "Multiple airport regions based on inter-airport temporal distances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 84-98.
    4. Reza Arabpour & John Armstrong & Luca Galimberti & Anastasis Kratsios & Giulia Livieri, 2024. "Low-dimensional approximations of the conditional law of Volterra processes: a non-positive curvature approach," Papers 2405.20094, arXiv.org.
    5. Fang, Yinhai & Xu, Haiyan & Perc, Matjaž & Tan, Qingmei, 2019. "Dynamic evolution of economic networks under the influence of mergers and divestitures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 89-99.
    6. Delgado, Luis & Gurtner, Gérald & Cook, Andrew & Martín, Jorge & Cristóbal, Samuel, 2020. "A multi-layer model for long-term KPI alignment forecasts for the air transportation system," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    8. Xiaoqian Sun & Sebastian Wandelt & Mark Hansen, 2020. "Airport Road Access at Planet Scale using Population Grid and Openstreetmap," Networks and Spatial Economics, Springer, vol. 20(1), pages 273-299, March.
    9. Andai, Attila, 2009. "On the geometry of generalized Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 777-793, April.
    10. Roucolle, Chantal & Seregina, Tatiana & Urdanoz, Miguel, 2020. "Measuring the development of airline networks: Comprehensive indicators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 303-324.
    11. Zhang, Qi & Li, Bing & Xue, Lingzhou, 2024. "Nonlinear sufficient dimension reduction for distribution-on-distribution regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    12. Branislav Popović & Lenka Cepova & Robert Cep & Marko Janev & Lidija Krstanović, 2021. "Measure of Similarity between GMMs by Embedding of the Parameter Space That Preserves KL Divergence," Mathematics, MDPI, vol. 9(9), pages 1-21, April.
    13. Betancourt, José & Bachoc, François & Klein, Thierry & Idier, Déborah & Pedreros, Rodrigo & Rohmer, Jérémy, 2020. "Gaussian process metamodeling of functional-input code for coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    14. Rodríguez-Sanz, à lvaro & Comendador, Fernando Gómez & Valdés, Rosa Arnaldo & Pérez-Castán, Javier A., 2018. "Characterization and prediction of the airport operational saturation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 147-172.
    15. Lidija Krstanović & Branislav Popović & Marko Janev & Branko Brkljač, 2023. "Feature Map Regularized CycleGAN for Domain Transfer," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    16. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
    17. Weihao Ouyang & Xiaohong Zhu, 2023. "Meta-Heuristic Solver with Parallel Genetic Algorithm Framework in Airline Crew Scheduling," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    18. Belkoura, Seddik & Cook, Andrew & Peña, José Maria & Zanin, Massimiliano, 2016. "On the multi-dimensionality and sampling of air transport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 95-109.
    19. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    20. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:685-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.