IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v173y2019icp685-703.html
   My bibliography  Save this article

Quantization and clustering on Riemannian manifolds with an application to air traffic analysis

Author

Listed:
  • Le Brigant, Alice
  • Puechmorel, Stéphane

Abstract

The goal of quantization is to find the best approximation of a probability distribution by a discrete measure with finite support. When dealing with empirical distributions, this boils down to finding the best summary of the data by a smaller number of points, and automatically yields a K-means-type clustering. In this paper, we introduce Competitive Learning Riemannian Quantization (CLRQ), an online quantization algorithm that applies when the data does not belong to a vector space, but rather a Riemannian manifold. It can be seen as a density approximation procedure as well as a clustering method. Compared to many clustering algorithms, it requires few distance computations, which is particularly computationally advantageous in the manifold setting. We prove its convergence and show simulated examples on the sphere and the hyperbolic plane. We also provide an application to real data by using CLRQ to create summaries of images of covariance matrices estimated from air traffic images. These summaries are representative of the air traffic complexity and yield clusterings of the airspaces into zones that are homogeneous with respect to that criterion. They can then be compared using discrete optimal transport and be further used as inputs of a machine learning algorithm or as indexes in a traffic database.

Suggested Citation

  • Le Brigant, Alice & Puechmorel, Stéphane, 2019. "Quantization and clustering on Riemannian manifolds with an application to air traffic analysis," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 685-703.
  • Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:685-703
    DOI: 10.1016/j.jmva.2019.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18303361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cook, Andrew & Blom, Henk A.P. & Lillo, Fabrizio & Mantegna, Rosario Nunzio & Miccichè, Salvatore & Rivas, Damián & Vázquez, Rafael & Zanin, Massimiliano, 2015. "Applying complexity science to air traffic management," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 149-158.
    2. Elsa Cazelles & Vivien Seguy & Jérémie Bigot & Marco Cuturi & Nicolas Papadakis, 2017. "Log-PCA versus Geodesic PCA of histograms in the Wasserstein space," Working Papers 2017-85, Center for Research in Economics and Statistics.
    3. Lovric, Miroslav & Min-Oo, Maung & Ruh, Ernst A., 2000. "Multivariate Normal Distributions Parametrized as a Riemannian Symmetric Space," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 36-48, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sana Rebbah & Florence Nicol & Stéphane Puechmorel, 2019. "The Geometry of the Generalized Gamma Manifold and an Application to Medical Imaging," Mathematics, MDPI, vol. 7(8), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    2. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    3. A. Micchelli, Charles & Noakes, Lyle, 2005. "Rao distances," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 97-115, January.
    4. Sun, Long Long & Hu, Ya Peng & Zhu, Chen Ping, 2023. "Scaling invariance in domestic passenger flight delays in the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    5. Florian Gunsilius & Meng Hsuan Hsieh & Myung Jin Lee, 2022. "Tangential Wasserstein Projections," Papers 2207.14727, arXiv.org, revised Aug 2022.
    6. Mazzarisi, Piero & Zaoli, Silvia & Lillo, Fabrizio & Delgado, Luis & Gurtner, Gérald, 2020. "New centrality and causality metrics assessing air traffic network interactions," Journal of Air Transport Management, Elsevier, vol. 85(C).
    7. Sun, Xiaoqian & Wandelt, Sebastian & Hansen, Mark & Li, Ang, 2017. "Multiple airport regions based on inter-airport temporal distances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 84-98.
    8. Reza Arabpour & John Armstrong & Luca Galimberti & Anastasis Kratsios & Giulia Livieri, 2024. "Low-dimensional approximations of the conditional law of Volterra processes: a non-positive curvature approach," Papers 2405.20094, arXiv.org.
    9. Fang, Yinhai & Xu, Haiyan & Perc, Matjaž & Tan, Qingmei, 2019. "Dynamic evolution of economic networks under the influence of mergers and divestitures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 89-99.
    10. Delgado, Luis & Gurtner, Gérald & Cook, Andrew & Martín, Jorge & Cristóbal, Samuel, 2020. "A multi-layer model for long-term KPI alignment forecasts for the air transportation system," Journal of Air Transport Management, Elsevier, vol. 89(C).
    11. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    12. Silvia Zaoli & Giovanni Scaini & Lorenzo Castelli, 2021. "Community Detection for Air Traffic Networks and Its Application in Strategic Flight Planning," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    13. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    14. Xiaoqian Sun & Sebastian Wandelt & Mark Hansen, 2020. "Airport Road Access at Planet Scale using Population Grid and Openstreetmap," Networks and Spatial Economics, Springer, vol. 20(1), pages 273-299, March.
    15. Andai, Attila, 2009. "On the geometry of generalized Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 777-793, April.
    16. Ying Jin & Ye Wei & Chunliang Xiu & Wei Song & Kaixian Yang, 2019. "Study on Structural Characteristics of China’s Passenger Airline Network Based on Network Motifs Analysis," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
    17. Roucolle, Chantal & Seregina, Tatiana & Urdanoz, Miguel, 2020. "Measuring the development of airline networks: Comprehensive indicators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 303-324.
    18. Zhang, Qi & Li, Bing & Xue, Lingzhou, 2024. "Nonlinear sufficient dimension reduction for distribution-on-distribution regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    19. Bongiorno, C. & Gurtner, G. & Lillo, F. & Mantegna, R.N. & Miccichè, S., 2017. "Statistical characterization of deviations from planned flight trajectories in air traffic management," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 152-163.
    20. Branislav Popović & Lenka Cepova & Robert Cep & Marko Janev & Lidija Krstanović, 2021. "Measure of Similarity between GMMs by Embedding of the Parameter Space That Preserves KL Divergence," Mathematics, MDPI, vol. 9(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:685-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.