IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v58y2017icp152-163.html
   My bibliography  Save this article

Statistical characterization of deviations from planned flight trajectories in air traffic management

Author

Listed:
  • Bongiorno, C.
  • Gurtner, G.
  • Lillo, F.
  • Mantegna, R.N.
  • Miccichè, S.

Abstract

Understanding the relation between planned and realized flight trajectories and the determinants of flight deviations is of great importance in air traffic management. In this paper we perform an in-depth investigation of the statistical properties of planned and realized air traffic on the German airspace during a 28 day periods, corresponding to an AIRAC cycle. We find that realized trajectories are on average shorter than planned ones and this effect is stronger during night-time than day-time. Flights are more frequently deviated close to the departure airport and at a relatively large angle-to-destination. Moreover, the probability of a deviation is higher in low traffic phases. All these evidences indicate that deviations are mostly used by controllers to give directs to flights when traffic conditions allow it. Finally we introduce a new metric, termed di-fork, which is able to characterize navigation points according to the likelihood that a deviation occurs there. Di-fork allows to identify in a statistically rigorous way navigation point pairs where deviations are more (less) frequent than expected under a null hypothesis of randomness that takes into account the heterogeneity of the navigation points. Such pairs can therefore be seen as sources of flexibility (stability) of controllers traffic management while conjugating safety and efficiency.

Suggested Citation

  • Bongiorno, C. & Gurtner, G. & Lillo, F. & Mantegna, R.N. & Miccichè, S., 2017. "Statistical characterization of deviations from planned flight trajectories in air traffic management," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 152-163.
  • Handle: RePEc:eee:jaitra:v:58:y:2017:i:c:p:152-163
    DOI: 10.1016/j.jairtraman.2016.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699716300539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2016.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gérald Gurtner & Stefania Vitali & Marco Cipolla & Fabrizio Lillo & Rosario Nunzio Mantegna & Salvatore Miccichè & Simone Pozzi, 2014. "Multi-Scale Analysis of the European Airspace Using Network Community Detection," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-17, May.
    2. Zanin, Massimiliano, 2014. "Network analysis reveals patterns behind air safety events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 201-206.
    3. Cook, Andrew & Blom, Henk A.P. & Lillo, Fabrizio & Mantegna, Rosario Nunzio & Miccichè, Salvatore & Rivas, Damián & Vázquez, Rafael & Zanin, Massimiliano, 2015. "Applying complexity science to air traffic management," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 149-158.
    4. Lacasa, Lucas & Cea, Miguel & Zanin, Massimiliano, 2009. "Jamming transition in air transportation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3948-3954.
    5. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    6. Malighetti, Paolo & Paleari, Stefano & Redondi, Renato, 2008. "Connectivity of the European airport network: “Self-help hubbing†and business implications," Journal of Air Transport Management, Elsevier, vol. 14(2), pages 53-65.
    7. Guida, Michele & Maria, Funaro, 2007. "Topology of the Italian airport network: A scale-free small-world network with a fractal structure?," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 527-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xinting & Hong, Ning & He, Fang & Lin, Yu & Li, Lishuai & Fu, Xiaowen, 2023. "Predicting aircraft trajectory uncertainties for terminal airspace design evaluation," Journal of Air Transport Management, Elsevier, vol. 113(C).
    2. Wang, Yuhao & Pang, Yutian & Chen, Oliver & Iyer, Hari N. & Dutta, Parikshit & Menon, P.K. & Liu, Yongming, 2021. "Uncertainty quantification and reduction in aircraft trajectory prediction using Bayesian-Entropy information fusion," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Salman Arif & Jason Atkin & Geert Maere, 2023. "Analysing the benefits of trajectory deviations for planar trajectory optimisation," Annals of Operations Research, Springer, vol. 326(1), pages 537-560, July.
    4. Carreras-Maide, Jaume & Lordan, Oriol & Sallan, Jose M., 2020. "Cost savings from trajectory deviations in the European air space," Journal of Air Transport Management, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cook, Andrew & Blom, Henk A.P. & Lillo, Fabrizio & Mantegna, Rosario Nunzio & Miccichè, Salvatore & Rivas, Damián & Vázquez, Rafael & Zanin, Massimiliano, 2015. "Applying complexity science to air traffic management," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 149-158.
    2. Mueller, Falko, 2022. "Examining COVID-19-triggered changes in spatial connectivity patterns in the European air transport network up to June 2021," Research in Transportation Economics, Elsevier, vol. 94(C).
    3. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Wang, Yu-Chen & Wong, Jinn-Tsai, 2019. "Exploring air network formation and development with a two-part model," Journal of Transport Geography, Elsevier, vol. 75(C), pages 122-131.
    5. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    6. Belkoura, Seddik & Cook, Andrew & Peña, José Maria & Zanin, Massimiliano, 2016. "On the multi-dimensionality and sampling of air transport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 95-109.
    7. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    8. Cumelles, Joel & Lordan, Oriol & Sallan, Jose M., 2021. "Cascading failures in airport networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    9. Sun, Long Long & Hu, Ya Peng & Zhu, Chen Ping, 2023. "Scaling invariance in domestic passenger flight delays in the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    10. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    11. Silva, Thiago Christiano & Dias, Felipe A.M. & dos Reis, Vinicius E. & Tabak, Benjamin M., 2022. "The role of network topology in competition and ticket pricing in air transportation: Evidence from Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    12. Sun, Xiaoqian & Wandelt, Sebastian & Hansen, Mark & Li, Ang, 2017. "Multiple airport regions based on inter-airport temporal distances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 84-98.
    13. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    14. Cheung, Tommy K.Y. & Wong, Collin W.H. & Zhang, Anming, 2020. "The evolution of aviation network: Global airport connectivity index 2006–2016," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    15. Gérald Gurtner & Fabrizio Lillo, 2018. "Strategic Allocation of Flight Plans in Air Traffic Management: An Evolutionary Point of View," Dynamic Games and Applications, Springer, vol. 8(4), pages 799-821, December.
    16. Zanin, Massimiliano & Herranz, Ricardo & Ladousse, Sophie, 2012. "Environmental benefits of air–rail intermodality: The example of Madrid Barajas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 1056-1063.
    17. Jiang, Yonglei & Yao, Baozhen & Wang, Lu & Feng, Tao & Kong, Lu, 2017. "Evolution trends of the network structure of Spring Airlines in China: A temporal and spatial analysis," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 18-30.
    18. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    19. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    20. Silvia Zaoli & Giovanni Scaini & Lorenzo Castelli, 2021. "Community Detection for Air Traffic Networks and Its Application in Strategic Flight Planning," Sustainability, MDPI, vol. 13(16), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:58:y:2017:i:c:p:152-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.