IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v141y2015icp22-34.html
   My bibliography  Save this article

The Matsumoto–Yor property on trees for matrix variates of different dimensions

Author

Listed:
  • Bobecka, Konstancja

Abstract

The paper is devoted to an extension of the multivariate Matsumoto–Yor (MY) independence property with respect to a tree with p vertices to the case where random variables corresponding to the vertices of the tree are replaced by random matrices. The converse of the p-variate MY property, which characterizes the product of one gamma and p−1 generalized inverse Gaussian distributions, is extended to characterize the product of the Wishart and p−1 matrix generalized inverse Gaussian distributions.

Suggested Citation

  • Bobecka, Konstancja, 2015. "The Matsumoto–Yor property on trees for matrix variates of different dimensions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 22-34.
  • Handle: RePEc:eee:jmvana:v:141:y:2015:i:c:p:22-34
    DOI: 10.1016/j.jmva.2015.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15001517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koudou, Angelo Efoévi, 2006. "A link between the Matsumoto-Yor property and an independence property on trees," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1097-1101, June.
    2. Ronald W. Butler, 1998. "Generalized Inverse Gaussian Distributions and their Wishart Connections," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 69-75, March.
    3. Koudou, Angelo Efoevi, 2012. "A Matsumoto–Yor property for Kummer and Wishart random matrices," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1903-1907.
    4. V. Seshadri & J. Wesołowski, 2008. "More on connections between Wishart and matrix GIG distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 219-232, September.
    5. Massam, Hélène & Wesolowski, Jacek, 2006. "The Matsumoto-Yor property and the structure of the Wishart distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 103-123, January.
    6. Matsumoto, Hiroyuki & Yor, Marc, 2003. "Interpretation via Brownian motion of some independence properties between GIG and gamma variables," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 253-259, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piliszek, Agnieszka & Wesołowski, Jacek, 2016. "Kummer and gamma laws through independences on trees—Another parallel with the Matsumoto–Yor property," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 15-27.
    2. Letac, Gérard & Wesołowski, Jacek, 2020. "Multivariate reciprocal inverse Gaussian distributions from the Sabot–Tarrès–Zeng integral," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    3. Wesołowski, Jacek, 2015. "On the Matsumoto–Yor type regression characterization of the gamma and Kummer distributions," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 145-149.
    4. Bartosz Kołodziejek, 2017. "The Matsumoto–Yor Property and Its Converse on Symmetric Cones," Journal of Theoretical Probability, Springer, vol. 30(2), pages 624-638, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesołowski, Jacek, 2015. "On the Matsumoto–Yor type regression characterization of the gamma and Kummer distributions," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 145-149.
    2. Piliszek, Agnieszka & Wesołowski, Jacek, 2016. "Kummer and gamma laws through independences on trees—Another parallel with the Matsumoto–Yor property," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 15-27.
    3. Matsumoto, Hiroyuki & Wesolowski, Jacek & Witkowski, Piotr, 2009. "Tree structured independence for exponential Brownian functionals," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3798-3815, October.
    4. Wesolowski, Jacek & Witkowski, Piotr, 2007. "Hitting times of Brownian motion and the Matsumoto-Yor property on trees," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1303-1315, September.
    5. Kozubowski, Tomasz J. & Mazur, Stepan & Podgórski, Krzysztof, 2022. "Matrix Gamma Distributions and Related Stochastic Processes," Working Papers 2022:12, Örebro University, School of Business.
    6. V. Seshadri & J. Wesołowski, 2008. "More on connections between Wishart and matrix GIG distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 219-232, September.
    7. Massam, Hélène & Wesolowski, Jacek, 2006. "The Matsumoto-Yor property and the structure of the Wishart distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 103-123, January.
    8. Bartosz Kołodziejek, 2017. "The Matsumoto–Yor Property and Its Converse on Symmetric Cones," Journal of Theoretical Probability, Springer, vol. 30(2), pages 624-638, June.
    9. Jolanta Misiewicz & Jacek Wesołowski, 2012. "Winding planar probabilities," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(4), pages 507-519, May.
    10. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2013. "On the exact and approximate distributions of the product of a Wishart matrix with a normal vector," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 70-81.
    11. Tounsi, Mariem & Zine, Raoudha, 2012. "The inverse Riesz probability distribution on symmetric matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 174-182.
    12. Chou, Chao-Wei & Huang, Wen-Jang, 2004. "On characterizations of the gamma and generalized inverse Gaussian distributions," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 381-388, October.
    13. Gerard, Thomas & Rapenne, Valentin & Sabot, Christophe & Zeng, Xiaolin, 2024. "A multi-dimensional version of Lamperti’s relation and the Matsumoto–Yor processes," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    14. Hamza, Marwa & Vallois, Pierre, 2016. "On Kummer’s distribution of type two and a generalized beta distribution," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 60-69.
    15. Hariya, Yuu & Yor, Marc, 2004. "On an extension of Dufresne's relation between exponential Brownian functionals from opposite drifts to two different drifts: a short proof," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 331-341, May.
    16. Harrar, Solomon W. & Seneta, Eugene & Gupta, Arjun K., 2006. "Duality between matrix variate t and matrix variate V.G. distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1467-1475, July.
    17. Battulga Gankhuu, 2024. "Bayesian Markov-Switching Vector Autoregressive Process," Papers 2404.11235, arXiv.org, revised Sep 2024.
    18. Letac, Gérard & Wesołowski, Jacek, 2020. "Multivariate reciprocal inverse Gaussian distributions from the Sabot–Tarrès–Zeng integral," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    19. Elena Hadjicosta & Donald Richards, 2020. "Integral transform methods in goodness-of-fit testing, II: the Wishart distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1317-1370, December.
    20. Koudou, Angelo Efoevi, 2012. "A Matsumoto–Yor property for Kummer and Wishart random matrices," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1903-1907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:141:y:2015:i:c:p:22-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.