IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v69y2004i4p381-388.html
   My bibliography  Save this article

On characterizations of the gamma and generalized inverse Gaussian distributions

Author

Listed:
  • Chou, Chao-Wei
  • Huang, Wen-Jang

Abstract

Given two independent non-degenerate positive random variables X and Y, Letac and Wesolowski (Ann. Probab. 28 (2000) 1371) proved that U=(X+Y)-1 and V=X-1-(X+Y)-1 are independent if and only if X and Y are generalized inverse Gaussian (GIG) and gamma distributed, respectively. Note that X=(U+V)-1 and Y=U-1-(U+V)-1. This interesting transformation between (X,Y) and (U,V) preserves a bivariate probability measure which is a product of GIG and gamma distributions. In this work, characterizations of the GIG and gamma distributions through the constancy of regressions of Vr on U are considered.

Suggested Citation

  • Chou, Chao-Wei & Huang, Wen-Jang, 2004. "On characterizations of the gamma and generalized inverse Gaussian distributions," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 381-388, October.
  • Handle: RePEc:eee:stapro:v:69:y:2004:i:4:p:381-388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00030-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Pusz, 1997. "Regressional Characterization of the Generalized Inverse Gaussian Population," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(2), pages 315-319, June.
    2. Matsumoto, Hiroyuki & Yor, Marc, 2003. "Interpretation via Brownian motion of some independence properties between GIG and gamma variables," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 253-259, February.
    3. Shun-Hwa Li & Wen-Jang Huang & Mong-Na Huang, 1994. "Characterizations of the Poisson process as a renewal process via two conditional moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 351-360, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadarajah, Saralees, 2009. "An alternative inverse Gaussian distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1721-1729.
    2. Wesołowski, Jacek, 2015. "On the Matsumoto–Yor type regression characterization of the gamma and Kummer distributions," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 145-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsumoto, Hiroyuki & Wesolowski, Jacek & Witkowski, Piotr, 2009. "Tree structured independence for exponential Brownian functionals," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3798-3815, October.
    2. Bobecka, Konstancja & Wesolowski, Jacek, 2004. "Multivariate Lukacs theorem," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 143-160, November.
    3. Wesolowski, Jacek & Witkowski, Piotr, 2007. "Hitting times of Brownian motion and the Matsumoto-Yor property on trees," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1303-1315, September.
    4. Gerard, Thomas & Rapenne, Valentin & Sabot, Christophe & Zeng, Xiaolin, 2024. "A multi-dimensional version of Lamperti’s relation and the Matsumoto–Yor processes," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    5. Wen-Jang Huang & Nan-Cheng Su, 2013. "Identification of power distribution mixtures through regression of exponentials," Statistical Papers, Springer, vol. 54(1), pages 227-241, February.
    6. Wesołowski, Jacek, 2015. "On the Matsumoto–Yor type regression characterization of the gamma and Kummer distributions," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 145-149.
    7. Bobecka, Konstancja, 2015. "The Matsumoto–Yor property on trees for matrix variates of different dimensions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 22-34.
    8. Hariya, Yuu & Yor, Marc, 2004. "On an extension of Dufresne's relation between exponential Brownian functionals from opposite drifts to two different drifts: a short proof," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 331-341, May.
    9. Piliszek, Agnieszka & Wesołowski, Jacek, 2016. "Kummer and gamma laws through independences on trees—Another parallel with the Matsumoto–Yor property," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 15-27.
    10. Massam, Hélène & Wesolowski, Jacek, 2006. "The Matsumoto-Yor property and the structure of the Wishart distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 103-123, January.
    11. Bartosz Kołodziejek, 2017. "The Matsumoto–Yor Property and Its Converse on Symmetric Cones," Journal of Theoretical Probability, Springer, vol. 30(2), pages 624-638, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:69:y:2004:i:4:p:381-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.