IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v175y2020ics0047259x19300703.html
   My bibliography  Save this article

Multivariate reciprocal inverse Gaussian distributions from the Sabot–Tarrès–Zeng integral

Author

Listed:
  • Letac, Gérard
  • Wesołowski, Jacek

Abstract

In Sabot and Tarrès (2015), the authors have explicitly computed the integral STZn=∫exp(−〈x,y〉)(detMx)−1∕2dxwhere Mx is a symmetric matrix of order n with fixed non-positive off-diagonal coefficients and with diagonal (2x1,…,2xn). The domain of integration is the part of Rn for which Mx is positive definite. We calculate more generally for b1≥0,…bn≥0 the integral ∫exp−〈x,y〉−12b⊤Mx−1b(detMx)−1∕2dx,we show that it leads to a natural family of distributions in Rn, called the MRIGn probability laws. This family is stable by marginalization and by conditioning, and it has number of properties which are multivariate versions of familiar properties of univariate reciprocal inverse Gaussian distribution. In general, if the power of detMx under the integral in STZn is distinct from −1∕2 it is not known how to compute the integral. However, introducing the graph G having V={1,…,n} for set of vertices and the set E of {i,j}′ s of non-zero entries of Mx as set of edges, we show also that in the particular case where G is a tree, the integral ∫exp(−〈x,y〉)(detMx)q−1dxwhere q>0, is computable in terms of the MacDonald function Kq.

Suggested Citation

  • Letac, Gérard & Wesołowski, Jacek, 2020. "Multivariate reciprocal inverse Gaussian distributions from the Sabot–Tarrès–Zeng integral," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19300703
    DOI: 10.1016/j.jmva.2019.104559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19300703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bobecka, Konstancja, 2015. "The Matsumoto–Yor property on trees for matrix variates of different dimensions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 22-34.
    2. Ole E. Barndorff‐Nielsen & Tina Hviid Rydberg, 2000. "Exact Distributional Results for Random Resistance Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 129-141, March.
    3. Massam, Hélène & Wesolowski, Jacek, 2006. "The Matsumoto-Yor property and the structure of the Wishart distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 103-123, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesołowski, Jacek, 2015. "On the Matsumoto–Yor type regression characterization of the gamma and Kummer distributions," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 145-149.
    2. Piliszek, Agnieszka & Wesołowski, Jacek, 2016. "Kummer and gamma laws through independences on trees—Another parallel with the Matsumoto–Yor property," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 15-27.
    3. Bartosz Kołodziejek, 2017. "The Matsumoto–Yor Property and Its Converse on Symmetric Cones," Journal of Theoretical Probability, Springer, vol. 30(2), pages 624-638, June.
    4. Matsumoto, Hiroyuki & Wesolowski, Jacek & Witkowski, Piotr, 2009. "Tree structured independence for exponential Brownian functionals," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3798-3815, October.
    5. Wesolowski, Jacek & Witkowski, Piotr, 2007. "Hitting times of Brownian motion and the Matsumoto-Yor property on trees," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1303-1315, September.
    6. V. Seshadri & J. Wesołowski, 2008. "More on connections between Wishart and matrix GIG distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 219-232, September.
    7. Bobecka, Konstancja, 2015. "The Matsumoto–Yor property on trees for matrix variates of different dimensions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 22-34.
    8. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2013. "On the exact and approximate distributions of the product of a Wishart matrix with a normal vector," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 70-81.
    9. Tounsi, Mariem & Zine, Raoudha, 2012. "The inverse Riesz probability distribution on symmetric matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 174-182.
    10. Kozubowski, Tomasz J. & Mazur, Stepan & Podgórski, Krzysztof, 2022. "Matrix Gamma Distributions and Related Stochastic Processes," Working Papers 2022:12, Örebro University, School of Business.
    11. Koudou, Angelo Efoevi, 2012. "A Matsumoto–Yor property for Kummer and Wishart random matrices," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1903-1907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19300703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.