IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v119y2013icp1-15.html
   My bibliography  Save this article

Vine constructions of Lévy copulas

Author

Listed:
  • Grothe, Oliver
  • Nicklas, Stephan

Abstract

Lévy copulas are the most general concept to capture jump dependence in multivariate Lévy processes. They translate the intuition and many features of the copula concept into a time series setting. A challenge faced by both, distributional and Lévy copulas, is to find flexible but still applicable models for higher dimensions. To overcome this problem, the concept of pair-copula constructions has been successfully applied to distributional copulas. In this paper, we develop the pair Lévy copula construction (PLCC). Similar to pair constructions of distributional copulas, the pair construction of a d-dimensional Lévy copula consists of d(d−1)/2 bivariate dependence functions. We show that only d−1 of these bivariate functions are Lévy copulas, whereas the remaining functions are distributional copulas. Since there are no restrictions concerning the choice of the copulas, the proposed pair construction adds the desired flexibility to Lévy copula models. We discuss estimation and simulation in detail and apply the pair construction in a simulation study. To reduce the complexity of the notation, we restrict the presentation to Lévy subordinators, i.e., increasing Lévy processes.

Suggested Citation

  • Grothe, Oliver & Nicklas, Stephan, 2013. "Vine constructions of Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 1-15.
  • Handle: RePEc:eee:jmvana:v:119:y:2013:i:c:p:1-15
    DOI: 10.1016/j.jmva.2013.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
    3. Esmaeili, Habib & Klüppelberg, Claudia, 2010. "Parameter estimation of a bivariate compound Poisson process," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 224-233, October.
    4. Lee, Suzanne S. & Hannig, Jan, 2010. "Detecting jumps from Lévy jump diffusion processes," Journal of Financial Economics, Elsevier, vol. 96(2), pages 271-290, May.
    5. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    6. repec:bla:jfinan:v:59:y:2004:i:1:p:227-260 is not listed on IDEAS
    7. Sato, Ken-iti, 2001. "Subordination and self-decomposability," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 317-324, October.
    8. Esmaeili, Habib & Klüppelberg, Claudia, 2011. "Parametric estimation of a bivariate stable Lévy process," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 918-930, May.
    9. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    2. Vladimir Panov, 2017. "Series Representations for Multivariate Time-Changed Lévy Models," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 97-119, March.
    3. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Grothe & Stephan Nicklas, 2012. "Vine Constructions of Levy Copulas," Papers 1207.4309, arXiv.org, revised Sep 2012.
    2. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    3. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    4. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    5. Habib Esmaeili & Claudia Klüppelberg, 2013. "Two-Step Estimation Of A Multi-Variate Lévy Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 668-690, November.
    6. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
    7. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    8. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    9. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    10. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    11. Dominique Guegan & Bertrand Hassani, 2012. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Post-Print halshs-00587706, HAL.
    12. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    13. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    14. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    15. Zhichao Zhang & Li Ding & Fan Zhang & Zhuang Zhang, 2015. "Optimal Currency Composition for China's Foreign Reserves: A Copula Approach," The World Economy, Wiley Blackwell, vol. 38(12), pages 1947-1965, December.
    16. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    17. Prayer M. Rikhotso & Beatrice D. Simo-Kengne, 2022. "Dependence Structures between Sovereign Credit Default Swaps and Global Risk Factors in BRICS Countries," JRFM, MDPI, vol. 15(3), pages 1-22, February.
    18. Krystian Szczęsny & Stanisław Wanat & Anna Denkowska, 2023. "Solvency II and diversification effect for non-life premium and reserves risk: new results based on non-parametric copulas," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-26, September.
    19. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    20. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:119:y:2013:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.