IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v117y2013icp163-174.html
   My bibliography  Save this article

Sparse-smooth regularized singular value decomposition

Author

Listed:
  • Hong, Zhaoping
  • Lian, Heng

Abstract

We consider penalized singular value decomposition (SVD) for a (noisy) data matrix when the left singular vector has a sparse structure and the right singular vector is a discretized function. Such situations typically arise from spatio-temporal data where only some small spatial regions are “activated” as in fMRI data. We use two penalties that impose sparsity and smoothness. However, it is shown, somewhat surprisingly, that the value of only one parameter has to be chosen. This is in stark contrast to the penalized SVD models proposed by Huang et al. (2009) [12] and by Lee et al. (2010) [14]. We carry out some simulation studies and use an artificial fMRI data set and a real data set to illustrate the proposed approach.

Suggested Citation

  • Hong, Zhaoping & Lian, Heng, 2013. "Sparse-smooth regularized singular value decomposition," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 163-174.
  • Handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:163-174
    DOI: 10.1016/j.jmva.2013.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    3. Hu, Jianhua & He, Xuming & Cote, Gilbert J. & Krahe, Ralf, 2009. "Singular Value Decomposition–Based Alternative Splicing Detection," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 944-953.
    4. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    5. Díaz-García, José A. & Caro-Lopera, Francisco J., 2012. "Statistical theory of shape under elliptical models and singular value decompositions," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 77-92, January.
    6. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    7. Yata, Kazuyoshi & Aoshima, Makoto, 2010. "Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2060-2077, October.
    8. Huang, Jianhua Z. & Shen, Haipeng & Buja, Andreas, 2009. "The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1609-1620.
    9. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    3. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    4. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    5. Jie Chen & Joe Suzuki, 2021. "An Efficient Algorithm for Convex Biclustering," Mathematics, MDPI, vol. 9(23), pages 1-18, November.
    6. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    7. Yiyuan She & Jiahui Shen & Chao Zhang, 2022. "Supervised multivariate learning with simultaneous feature auto‐grouping and dimension reduction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 912-932, July.
    8. Binhuan Wang & Lanqiu Yao & Jiyuan Hu & Huilin Li, 2023. "A New Algorithm for Convex Biclustering and Its Extension to the Compositional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 193-216, April.
    9. Tung Duy Luu & Jalal Fadili & Christophe Chesneau, 2021. "Sampling from Non-smooth Distributions Through Langevin Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1173-1201, December.
    10. Eric C. Chi & Genevera I. Allen & Richard G. Baraniuk, 2017. "Convex biclustering," Biometrics, The International Biometric Society, vol. 73(1), pages 10-19, March.
    11. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    12. Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.
    13. Shen, Dan & Shen, Haipeng & Marron, J.S., 2013. "Consistency of sparse PCA in High Dimension, Low Sample Size contexts," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 317-333.
    14. Mark J. Meyer & Brent A. Coull & Francesco Versace & Paul Cinciripini & Jeffrey S. Morris, 2015. "Bayesian function‐on‐function regression for multilevel functional data," Biometrics, The International Biometric Society, vol. 71(3), pages 563-574, September.
    15. Wang, Shao-Hsuan & Huang, Su-Yun & Chen, Ting-Li, 2020. "On asymptotic normality of cross data matrix-based PCA in high dimension low sample size," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    16. Gong, Tingnan & Zhang, Weiping & Chen, Yu, 2023. "Uncovering block structures in large rectangular matrices," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    17. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    18. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    19. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    20. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.

    More about this item

    Keywords

    fMRI; Splines; SVD; Wavelets;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:163-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.