IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v116y2013icp278-296.html
   My bibliography  Save this article

Robust and efficient estimation of the residual scale in linear regression

Author

Listed:
  • Van Aelst, Stefan
  • Willems, Gert
  • Zamar, Ruben H.

Abstract

Robustness and efficiency of the residual scale estimators in the regression model is important for robust inference. We introduce the class of robust generalized M-scale estimators for the regression model, derive their influence function and gross-error sensitivity, and study their maxbias behavior. In particular, we find overall minimax bias estimates for the general class and also for well-known subclasses. We pose and solve a Hampel’s-like optimality problem: we find generalized M-scale estimators with maximal efficiency subject to a lower bound on the global and local robustness of the estimators.

Suggested Citation

  • Van Aelst, Stefan & Willems, Gert & Zamar, Ruben H., 2013. "Robust and efficient estimation of the residual scale in linear regression," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 278-296.
  • Handle: RePEc:eee:jmvana:v:116:y:2013:i:c:p:278-296
    DOI: 10.1016/j.jmva.2012.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12002916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Randal, John A., 2008. "A reinvestigation of robust scale estimation in finite samples," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5014-5021, July.
    2. Van Aelst, Stefan & Willems, Gert, 2011. "Robust and Efficient One-Way MANOVA Tests," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 706-718.
    3. Croux, Christophe & Haesbroeck, Gentiane, 1999. "Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 161-190, November.
    4. Croux, Christophe, 1994. "Efficient high-breakdown M-estimators of scale," Statistics & Probability Letters, Elsevier, vol. 19(5), pages 371-379, April.
    5. Agulló, Jose & Croux, Christophe & Van Aelst, Stefan, 2008. "The multivariate least-trimmed squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 311-338, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salibian-Barrera, Matias & Van Aelst, Stefan & Yohai, Víctor J., 2016. "Robust tests for linear regression models based on τ-estimates," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 436-455.
    2. Peremans, Kris & Van Aelst, Stefan, 2018. "Robust inference for seemingly unrelated regression models," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 212-224.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    2. Lanius, Vivian & Gather, Ursula, 2010. "Robust online signal extraction from multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 966-975, April.
    3. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    4. Serneels, Sven & Verdonck, Tim, 2008. "Principal component analysis for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1712-1727, January.
    5. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    6. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2013. "Robust distances for outlier-free goodness-of-fit testing," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 29-45.
    7. Cator, Eric A. & Lopuhaä, Hendrik P., 2010. "Asymptotic expansion of the minimum covariance determinant estimators," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2372-2388, November.
    8. Silvia Salini & Andrea Cerioli & Fabrizio Laurini & Marco Riani, 2016. "Reliable Robust Regression Diagnostics," International Statistical Review, International Statistical Institute, vol. 84(1), pages 99-127, April.
    9. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    10. Gottard, Anna & Pacillo, Simona, 2010. "Robust concentration graph model selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3070-3079, December.
    11. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    12. Xu, Li-Wen, 2015. "Parametric bootstrap approaches for two-way MANOVA with unequal cell sizes and unequal cell covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 291-303.
    13. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    14. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    15. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    16. Gervini, Daniel, 2003. "A robust and efficient adaptive reweighted estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 116-144, January.
    17. Sharifah Soaad Syed Yahaya & Hazlina Ali & Zurni Omar, 2011. "An Alternative Hotelling T^2 Control Chart Based on Minimum Vector Variance (MVV)," Modern Applied Science, Canadian Center of Science and Education, vol. 5(4), pages 132-132, August.
    18. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    19. Christophe Croux & Catherine Dehon & Abdelilah Yadine, 2011. "On the Optimality of Multivariate S‐Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(2), pages 332-341, June.
    20. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:116:y:2013:i:c:p:278-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.