IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v111y2012icp110-119.html
   My bibliography  Save this article

Limiting distributions of high-dimensional multivariate Beta-type distributions

Author

Listed:
  • Sakurai, Tetsuro

Abstract

This paper investigates the limiting distributions of two high-dimensional multivariate Beta-type distributions. These Beta distributions have three parameters including a dimension. Limiting distributions of the Beta distributions have been obtained under one or two parameters that tend toward infinity. In this paper, we derive the limiting distributions of two multivariate Beta-type distributions under three parameters that tend toward infinity. These results were obtained using the martingale limit theory. Numerical simulations revealed that those approximations are more accurate than the other approximations for a wide range.

Suggested Citation

  • Sakurai, Tetsuro, 2012. "Limiting distributions of high-dimensional multivariate Beta-type distributions," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 110-119.
  • Handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:110-119
    DOI: 10.1016/j.jmva.2012.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    2. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    3. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    4. Schott, James R., 2008. "A test for independence of two sets of variables when the number of variables is large relative to the sample size," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3096-3102, December.
    5. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    6. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    7. Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
    8. Mao, Guangyu, 2015. "A note on testing complete independence for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 82-85.
    9. Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
    10. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    11. He, Daojiang & Liu, Huanyu & Xu, Kai & Cao, Mingxiang, 2021. "Generalized Schott type tests for complete independence in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    12. Fujikoshi, Yasunori & Sakurai, Tetsuro & Yanagihara, Hirokazu, 2014. "Consistency of high-dimensional AIC-type and Cp-type criteria in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 184-200.
    13. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    14. Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2013. "A necessary test for complete independence in high dimensions using rank-correlations," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 224-232.
    15. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    16. Changliang Zou & Liuhua Peng & Long Feng & Zhaojun Wang, 2014. "Multivariate sign-based high-dimensional tests for sphericity," Biometrika, Biometrika Trust, vol. 101(1), pages 229-236.
    17. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    18. He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.
    19. Guangming Pan & Jiti Gao & Yanrong Yang & Meihui Guo, 2015. "Cross-sectional Independence Test for a Class of Parametric Panel Data Models," Monash Econometrics and Business Statistics Working Papers 17/15, Monash University, Department of Econometrics and Business Statistics.
    20. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:110-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.