IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v106y2012icp92-117.html
   My bibliography  Save this article

Asymptotic normality of support vector machine variants and other regularized kernel methods

Author

Listed:
  • Hable, Robert

Abstract

In nonparametric classification and regression problems, regularized kernel methods, in particular support vector machines, attract much attention in theoretical and in applied statistics. In an abstract sense, regularized kernel methods (simply called SVMs here) can be seen as regularized M-estimators for a parameter in a (typically infinite dimensional) reproducing kernel Hilbert space. For smooth loss functions L, it is shown that the difference between the estimator, i.e. the empirical SVM fL,Dn,λDn, and the theoretical SVM fL,P,λ0 is asymptotically normal with rate n. That is, n(fL,Dn,λDn−fL,P,λ0) converges weakly to a Gaussian process in the reproducing kernel Hilbert space. As common in real applications, the choice of the regularization parameter Dn in fL,Dn,λDn may depend on the data. The proof is done by an application of the functional delta-method and by showing that the SVM-functional P↦fL,P,λ is suitably Hadamard-differentiable.

Suggested Citation

  • Hable, Robert, 2012. "Asymptotic normality of support vector machine variants and other regularized kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 92-117.
  • Handle: RePEc:eee:jmvana:v:106:y:2012:i:c:p:92-117
    DOI: 10.1016/j.jmva.2011.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11002090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2011.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hable, Robert & Christmann, Andreas, 2011. "On qualitative robustness of support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 993-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang Rui & Imaizumi Masaaki & Schölkopf Bernhard & Muandet Krikamol, 2023. "Instrumental variable regression via kernel maximum moment loss," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-42, January.
    2. Tino Werner, 2022. "Asymptotic linear expansion of regularized M-estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 167-194, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zähle, Henryk, 2016. "A definition of qualitative robustness for general point estimators, and examples," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 12-31.
    2. Katharina Strohriegl & Robert Hable, 2016. "Qualitative robustness of estimators on stochastic processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 895-917, November.
    3. Christmann, Andreas & Hable, Robert, 2012. "Consistency of support vector machines using additive kernels for additive models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 854-873.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:106:y:2012:i:c:p:92-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.