IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i6p1064-1079.html
   My bibliography  Save this article

Bahadur representation for U-quantiles of dependent data

Author

Listed:
  • Wendler, Martin

Abstract

U-quantiles are applied in robust statistics, like the Hodges-Lehmann estimator of location for example. They have been analysed in the case of independent random variables with the help of a generalized Bahadur representation. Our main aim is to extend these results to U-quantiles of strongly mixing random variables and functionals of absolutely regular sequences. We obtain the central limit theorem and the law of the iterated logarithm for U-quantiles as straightforward corollaries. Furthermore, we improve the existing result for sample quantiles of mixing data.

Suggested Citation

  • Wendler, Martin, 2011. "Bahadur representation for U-quantiles of dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1064-1079, July.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:6:p:1064-1079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(11)00038-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Pranab Kumar, 1972. "On the Bahadur representation of sample quantiles for sequences of [phi]-mixing random variables," Journal of Multivariate Analysis, Elsevier, vol. 2(1), pages 77-95, March.
    2. Dehling, Herold & Wendler, Martin, 2010. "Central limit theorem and the bootstrap for U-statistics of strongly mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 126-137, January.
    3. Yoshihara, Ken-ichi, 1995. "The Bahadur representation of sample quantiles for sequences of strongly mixing random variables," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 299-304, September.
    4. Sun, Shuxia, 2006. "The Bahadur representation for sample quantiles under weak dependence," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1238-1244, July.
    5. Babu, Gutti Jogesh & Singh, Kesar, 1978. "On deviations between empirical and quantile processes for mixing random variables," Journal of Multivariate Analysis, Elsevier, vol. 8(4), pages 532-549, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Fan & Peter W. Glynn & Markus Pelger, 2018. "Change-Point Testing for Risk Measures in Time Series," Papers 1809.02303, arXiv.org, revised Jul 2023.
    2. Marcel Bräutigam & Marie Kratz, 2019. "Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes," Working Papers hal-02176276, HAL.
    3. Tarr, G. & Weber, N.C. & Müller, S., 2015. "The difference of symmetric quantiles under long range dependence," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 144-150.
    4. Dürre, Alexander & Vogel, Daniel, 2016. "Asymptotics of the two-stage spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 54-67.
    5. Marcel, Bräutigam & Marie, Kratz, 2019. "Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes," ESSEC Working Papers WP1909, ESSEC Research Center, ESSEC Business School.
    6. Zacharias Psaradakis & Marián Vávra, 2022. "Using Triples to Assess Symmetry Under Weak Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1538-1551, October.
    7. Sharipov, Olimjon Sh. & Wendler, Martin, 2013. "Normal limits, nonnormal limits, and the bootstrap for quantiles of dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1028-1035.
    8. Dehling, Herold & Fried, Roland, 2012. "Asymptotic distribution of two-sample empirical U-quantiles with applications to robust tests for shifts in location," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 124-140.
    9. Wendler, Martin, 2012. "U-processes, U-quantile processes and generalized linear statistics of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 787-807.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
    2. Sharipov, Olimjon Sh. & Wendler, Martin, 2013. "Normal limits, nonnormal limits, and the bootstrap for quantiles of dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1028-1035.
    3. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.
    4. Ling, Nengxiang, 2008. "The Bahadur representation for sample quantiles under negatively associated sequence," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2660-2663, November.
    5. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    6. Coeurjolly, Jean-François, 2008. "Bahadur representation of sample quantiles for functional of Gaussian dependent sequences under a minimal assumption," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2485-2489, October.
    7. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    8. Ajami, M. & Fakoor, V. & Jomhoori, S., 2011. "The Bahadur representation for kernel-type estimator of the quantile function under strong mixing and censored data," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1306-1310, August.
    9. Polonik, Wolfgang & Yao, Qiwei, 2002. "Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 234-255, February.
    10. Xuejun Wang & Yi Wu & Wei Yu & Wenzhi Yang & Shuhe Hu, 2019. "Asymptotics for the linear kernel quantile estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1144-1174, December.
    11. Sun, Shuxia, 2006. "The Bahadur representation for sample quantiles under weak dependence," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1238-1244, July.
    12. Yoshihara, Ken-ichi, 1995. "The Bahadur representation of sample quantiles for sequences of strongly mixing random variables," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 299-304, September.
    13. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    14. Ghalibaf, M. Bolbolian & Fakoor, V. & Azarnoosh, H.A., 2010. "Strong Gaussian approximations of product-limit and quantile processes for truncated data under strong mixing," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 581-586, April.
    15. Wendler, Martin, 2012. "U-processes, U-quantile processes and generalized linear statistics of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 787-807.
    16. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    17. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    18. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    19. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    20. Dagmara Dudek & Anna Kuczmaszewska, 2024. "Some practical and theoretical issues related to the quantile estimators," Statistical Papers, Springer, vol. 65(6), pages 3917-3933, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:6:p:1064-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.