IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i8p1306-1310.html
   My bibliography  Save this article

The Bahadur representation for kernel-type estimator of the quantile function under strong mixing and censored data

Author

Listed:
  • Ajami, M.
  • Fakoor, V.
  • Jomhoori, S.

Abstract

In this paper, we consider the kernel-type estimator of the quantile function based on the kernel smoother under a censored dependent model. The Bahadur-type representation of the kernel smooth estimator is established, and from the Bahadur representation we can show that this estimator is strongly consistent.

Suggested Citation

  • Ajami, M. & Fakoor, V. & Jomhoori, S., 2011. "The Bahadur representation for kernel-type estimator of the quantile function under strong mixing and censored data," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1306-1310, August.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1306-1310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001246
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Pranab Kumar, 1972. "On the Bahadur representation of sample quantiles for sequences of [phi]-mixing random variables," Journal of Multivariate Analysis, Elsevier, vol. 2(1), pages 77-95, March.
    2. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    3. Masry, Elias & Tjøstheim, Dag, 1997. "Additive Nonlinear ARX Time Series and Projection Estimates," Econometric Theory, Cambridge University Press, vol. 13(2), pages 214-252, April.
    4. Yu, Hao, 1996. "A note on strong approximation for quantile processes of strong mixing sequences," Statistics & Probability Letters, Elsevier, vol. 30(1), pages 1-7, September.
    5. Xiang, X. J., 1995. "Bahadur Representation of the Kernel Quantile Estimator under Random Censorship," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 193-209, August.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    7. Fotopoulos, S. B. & Ahn, S. K., 1994. "Strong Approximation of the Quantile Processes and Its Applications under Strong Mixing Properties," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 17-45, October.
    8. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    9. Szeman Tse, 2005. "Quantile process for left truncated and right censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 61-69, March.
    10. Yoshihara, Ken-ichi, 1995. "The Bahadur representation of sample quantiles for sequences of strongly mixing random variables," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 299-304, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghalibaf, M. Bolbolian & Fakoor, V. & Azarnoosh, H.A., 2010. "Strong Gaussian approximations of product-limit and quantile processes for truncated data under strong mixing," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 581-586, April.
    2. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    3. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    4. Kim, Woocheol & Linton, Oliver, 2003. "A local instrumental variable estimation method for generalized additive volatility models," LSE Research Online Documents on Economics 2028, London School of Economics and Political Science, LSE Library.
    5. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    6. Cai, Zongwu & Fan, Jianqing, 2000. "Average Regression Surface for Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 112-142, October.
    7. Fakoor, Vahid & Jomhoori, Sarah & Azarnoosh, Hasanali, 2009. "Asymptotic expansion for ISE of kernel density estimators under censored dependent model," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1809-1817, September.
    8. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    9. Karlsen, Hans Arnfinn & Tjostheim, Dag, 1998. "Nonparametric estimation in null recurrent times series," SFB 373 Discussion Papers 1998,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    11. Fakoor, V., 2010. "Strong uniform consistency of kernel density estimators under a censored dependent model," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 318-323, March.
    12. Li, Shu & Ernest, Jan & Bühlmann, Peter, 2017. "Nonparametric causal inference from observational time series through marginal integration," Econometrics and Statistics, Elsevier, vol. 2(C), pages 81-105.
    13. Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
    14. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.
    15. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    16. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
    17. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    18. da Silva, Murilo & Sriram, T.N. & Ke, Yuan, 2023. "Dimension reduction in time series under the presence of conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    19. Haiyan Wang & Michael Akritas, 2010. "Inference from heteroscedastic functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 149-168.
    20. Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1306-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.