Limiting distributions of maxima under triangular schemes
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hashorva, Enkelejd, 2005. "Elliptical triangular arrays in the max-domain of attraction of Hüsler-Reiss distribution," Statistics & Probability Letters, Elsevier, vol. 72(2), pages 125-135, April.
- Frick, Melanie & Reiss, Rolf-Dieter, 2009. "Expansions of multivariate Pickands densities and testing the tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1168-1181, July.
- Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
- Manjunath, B.G. & Frick, Melanie & Reiss, Rolf-Dieter, 2012. "Some notes on extremal discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 107-115, January.
- Frick, Melanie & Reiss, Rolf-Dieter, 2013. "Expansions and penultimate distributions of maxima of bivariate normal random vectors," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2563-2568.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
- Frick, Melanie & Reiss, Rolf-Dieter, 2013. "Expansions and penultimate distributions of maxima of bivariate normal random vectors," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2563-2568.
- Manjunath, B.G. & Frick, Melanie & Reiss, Rolf-Dieter, 2012. "Some notes on extremal discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 107-115, January.
- Opitz, T., 2013. "Extremal t processes: Elliptical domain of attraction and a spectral representation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 409-413.
- Enkelejd Hashorva & Zuoxiang Peng & Zhichao Weng, 2016. "Higher-order expansions of distributions of maxima in a Hüsler-Reiss model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 181-196, March.
- Hashorva, Enkelejd, 2006. "On the multivariate Hüsler-Reiss distribution attracting the maxima of elliptical triangular arrays," Statistics & Probability Letters, Elsevier, vol. 76(18), pages 2027-2035, December.
- Weng, Zhichao & Liao, Xin, 2017. "Second order expansions of distributions of maxima of bivariate Gaussian triangular arrays under power normalization," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 33-43.
- Hashorva, Enkelejd, 2006. "A novel class of bivariate max-stable distributions," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1047-1055, May.
- Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
- Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
- Dominique Guegan & Bertrand Hassani, 2011.
"Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach,"
Documents de travail du Centre d'Economie de la Sorbonne
11017r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2011.
- Dominique Guegan & Bertrand Hassani, 2012. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00587706, HAL.
- Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
- Dominique Guegan & Bertrand Hassani, 2012. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Post-Print halshs-00587706, HAL.
- Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
- Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
- Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- repec:jss:jstsof:21:i04 is not listed on IDEAS
- Hashorva, Enkelejd, 2005. "Elliptical triangular arrays in the max-domain of attraction of Hüsler-Reiss distribution," Statistics & Probability Letters, Elsevier, vol. 72(2), pages 125-135, April.
More about this item
Keywords
Extreme value distribution functions Spectral density Limiting distribution functions Triangular schemes Residual dependence;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2346-2357. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.