IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v77y1997i2p330-353.html
   My bibliography  Save this article

Existence of Equilibrium in Bayesian Games with Infinitely Many Players

Author

Listed:
  • Kim, Taesung
  • Yannelis, Nicholas C.

Abstract

No abstract is available for this item.

Suggested Citation

  • Kim, Taesung & Yannelis, Nicholas C., 1997. "Existence of Equilibrium in Bayesian Games with Infinitely Many Players," Journal of Economic Theory, Elsevier, vol. 77(2), pages 330-353, December.
  • Handle: RePEc:eee:jetheo:v:77:y:1997:i:2:p:330-353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(97)92335-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Konard Podczeck, 1997. "Markets with infinitely many commodities and a continuum of agents with non-convex preferences (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(3), pages 385-426.
    3. Balder, Erik J & Yannelis, Nicholas C, 1993. "On the Continuity of Expected Utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(4), pages 625-643, October.
    4. Balder E. J. & Rustichini A., 1994. "An Equilibrium Result for Games with Private Information and Infinitely Many Players," Journal of Economic Theory, Elsevier, vol. 62(2), pages 385-393, April.
    5. Palfrey, Thomas R. & Srivastava, Sanjay, 1986. "Private information in large economies," Journal of Economic Theory, Elsevier, vol. 39(1), pages 34-58, June.
    6. Postlewaite, Andrew & Schmeidler, David, 1986. "Implementation in differential information economies," Journal of Economic Theory, Elsevier, vol. 39(1), pages 14-33, June.
    7. Roy Radner & Robert W. Rosenthal, 1982. "Private Information and Pure-Strategy Equilibria," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 401-409, August.
    8. Balder, Erik J, 1991. "On Cournot-Nash Equilibrium Distributions for Games with Differential Information and Discontinuous Payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(4), pages 339-354, October.
    9. Erik J. Balder, 1988. "Generalized Equilibrium Results for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 265-276, May.
    10. Hiai, Fumio & Umegaki, Hisaharu, 1977. "Integrals, conditional expectations, and martingales of multivalued functions," Journal of Multivariate Analysis, Elsevier, vol. 7(1), pages 149-182, March.
    11. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bajoori, Elnaz & Vermeulen, Dries, 2019. "Equilibrium selection in interdependent value auctions," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 47-56.
    2. Karp, Larry & Lee, In Ho & Mason, Robin, 2007. "A global game with strategic substitutes and complements," Games and Economic Behavior, Elsevier, vol. 60(1), pages 155-175, July.
    3. Archishman Chakraborty & Bilge Yilmaz, 2008. "Microstructure Bluffing with Nested Information," American Economic Review, American Economic Association, vol. 98(2), pages 280-284, May.
    4. repec:eid:wpaper:37904 is not listed on IDEAS
    5. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    6. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    7. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    8. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    9. Paulo Barelli & John Duggan, 2011. "Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities," RCER Working Papers 567, University of Rochester - Center for Economic Research (RCER).
    10. Olszewski, Wojciech & Siegel, Ron, 2023. "Equilibrium existence in games with ties," Theoretical Economics, Econometric Society, vol. 18(2), May.
    11. Fu, Haifeng & Xu, Ying & Zhang, Luyi, 2007. "Characterizing Pure-strategy Equilibria in Large Games," MPRA Paper 7514, University Library of Munich, Germany.
    12. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    2. Askoura, Y. & Sbihi, M. & Tikobaini, H., 2013. "The ex ante α-core for normal form games with uncertainty," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 157-162.
    3. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    4. Oriol Carbonell-Nicolau & Richard P. McLean, 2018. "On the Existence of Nash Equilibrium in Bayesian Games," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 100-129, February.
    5. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    6. Paulo Barelli & John Duggan, 2011. "Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities," RCER Working Papers 567, University of Rochester - Center for Economic Research (RCER).
    7. Einy, Ezra & Haimanko, Ori, 2020. "Equilibrium existence in games with a concave Bayesian potential," Games and Economic Behavior, Elsevier, vol. 123(C), pages 288-294.
    8. Stinchcombe, Maxwell B., 2011. "Correlated equilibrium existence for infinite games with type-dependent strategies," Journal of Economic Theory, Elsevier, vol. 146(2), pages 638-655, March.
    9. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    10. Haifeng Fu, 2008. "Mixed-strategy equilibria and strong purification for games with private and public information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 521-532, December.
    11. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2013. "Savage Games: A Theory of Strategic Interaction with Purely Subjective Uncertainty," Risk and Sustainable Management Group Working Papers 151501, University of Queensland, School of Economics.
    12. Khan, M. Ali & Yeneng, Sun, 1995. "Pure strategies in games with private information," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 633-653.
    13. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    14. He, Wei & Sun, Xiang, 2014. "On the diffuseness of incomplete information game," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 131-137.
    15. Yuhki Hosoya & Chaowen Yu, 2022. "On the approximate purification of mixed strategies in games with infinite action sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 69-93, May.
    16. Michael Greinecker & Konrad Podczeck, 2015. "Purification and roulette wheels," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(2), pages 255-272, February.
    17. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2016. "Savage games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    18. Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
    19. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.
    20. Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:77:y:1997:i:2:p:330-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.