IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v148y2013i3p1282-1291.html
   My bibliography  Save this article

Von Neumann–Morgenstern solutions in the assignment market

Author

Listed:
  • Núñez, Marina
  • Rafels, Carles

Abstract

The existence of von Neumann–Morgenstern solutions (stable sets) for assignment games has been an unsolved question since Shapley and Shubik (1972) [11]. For each optimal matching between buyers and sellers, Shubik (1984) [12] proposed considering the union of the core of the game and the core of the subgames that are compatible with this matching. We prove in the present paper that this set is the unique stable set for the assignment game that excludes third-party payments with respect to a fixed optimal matching. Moreover, the stable sets that we characterize, as well as any other stable set of the assignment game, have a lattice structure with respect to the same partial order usually defined on the core.

Suggested Citation

  • Núñez, Marina & Rafels, Carles, 2013. "Von Neumann–Morgenstern solutions in the assignment market," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1282-1291.
  • Handle: RePEc:eee:jetheo:v:148:y:2013:i:3:p:1282-1291
    DOI: 10.1016/j.jet.2012.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053113000227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2012.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Núñez, Marina & Rafels, Carles, 2009. "A glove-market partitioned matrix related to the assignment game," Games and Economic Behavior, Elsevier, vol. 67(2), pages 598-610, November.
    2. Quint, Thomas, 1991. "The core of an m-sided assignment game," Games and Economic Behavior, Elsevier, vol. 3(4), pages 487-503, November.
    3. Ehlers, Lars, 2007. "Von Neumann-Morgenstern stable sets in matching problems," Journal of Economic Theory, Elsevier, vol. 134(1), pages 537-547, May.
    4. T. E. S. Raghavan & Tamás Solymosi, 2001. "Assignment games with stable core," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 177-185.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Núñez, Marina & Vidal-Puga, Juan, 2022. "Stable cores in information graph games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 353-367.
    2. Bando, Keisuke & Kawasaki, Ryo, 2021. "Stability properties of the core in a generalized assignment problem," Games and Economic Behavior, Elsevier, vol. 130(C), pages 211-223.
    3. Keisuke Bando & Yakuma Furusawa, 2023. "The minimum set of $$\mu $$ μ -compatible subgames for obtaining a stable set in an assignment game," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 231-252, March.
    4. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    5. van den Brink, René & Núñez, Marina & Robles, Francisco, 2021. "Valuation monotonicity, fairness and stability in assignment problems," Journal of Economic Theory, Elsevier, vol. 195(C).
    6. Atay, Ata & Núñez, Marina, 2019. "A note on the relationship between the core and stable sets in three-sided markets," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 10-14.
    7. Hirai, Toshiyuki & Watanabe, Naoki, 2018. "von Neumann–Morgenstern stable sets of a patent licensing game: The existence proof," Mathematical Social Sciences, Elsevier, vol. 94(C), pages 1-12.
    8. Dezső Bednay, 2014. "Stable sets in one-seller assignment games," Annals of Operations Research, Springer, vol. 222(1), pages 143-152, November.
    9. Saadia El Obadi & Silvia Miquel, 2019. "Assignment Games with a Central Player," Group Decision and Negotiation, Springer, vol. 28(6), pages 1129-1148, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirai, Toshiyuki & Watanabe, Naoki, 2018. "von Neumann–Morgenstern stable sets of a patent licensing game: The existence proof," Mathematical Social Sciences, Elsevier, vol. 94(C), pages 1-12.
    2. Marina Núñez & Carles Rafels, 2009. "Von Neumann-Morgenstern stable-set solutions in the assignment market," Working Papers 412, Barcelona School of Economics.
    3. Atay, Ata & Núñez, Marina, 2019. "A note on the relationship between the core and stable sets in three-sided markets," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 10-14.
    4. Oriol Tejada, 2013. "Analysis of the core of multisided Böhm-Bawerk assignment markets," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 189-205, April.
    5. Keisuke Bando & Yakuma Furusawa, 2023. "The minimum set of $$\mu $$ μ -compatible subgames for obtaining a stable set in an assignment game," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 231-252, March.
    6. Bando, Keisuke & Kawasaki, Ryo, 2021. "Stability properties of the core in a generalized assignment problem," Games and Economic Behavior, Elsevier, vol. 130(C), pages 211-223.
    7. Oriol Tejada & Marina Núñez, 2012. "The nucleolus and the core-center of multi-sided Böhm-Bawerk assignment markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(2), pages 199-220, April.
    8. Bolle, Friedel & Breitmoser, Yves & Otto, Philipp E., 2011. "A positive theory of cooperative games: The logit core and its variants," MPRA Paper 32918, University Library of Munich, Germany.
    9. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
    10. Ata Atay & Ana Mauleon & Vincent Vannetelbosch, 2022. "Limited Farsightedness in Priority-Based Matching," Papers 2212.07427, arXiv.org.
    11. Nunez, Marina & Rafels, Carles, 2003. "Characterization of the extreme core allocations of the assignment game," Games and Economic Behavior, Elsevier, vol. 44(2), pages 311-331, August.
    12. Bloch, Francis & van den Nouweland, Anne, 2020. "Farsighted stability with heterogeneous expectations," Games and Economic Behavior, Elsevier, vol. 121(C), pages 32-54.
    13. Herings, P. Jean-Jacques & Mauleon, Ana & Vannetelbosch, Vincent, 2020. "Matching with myopic and farsighted players," Journal of Economic Theory, Elsevier, vol. 190(C).
    14. Raïssa-Juvette Samba Zitou & Rhonya Adli, 2012. "Quasi stable outcomes in the assignment game," Theory and Decision, Springer, vol. 72(3), pages 323-340, March.
    15. , & , J. & ,, 2011. "Von Neumann-Morgenstern farsightedly stable sets in two-sided matching," Theoretical Economics, Econometric Society, vol. 6(3), September.
    16. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2016. "On the existence of the Dutta-Ray’s egalitarian solution," Working Papers 2072/266573, Universitat Rovira i Virgili, Department of Economics.
    17. van Velzen, S., 2005. "Simple Combinatorial Optimisation Cost Games," Discussion Paper 2005-118, Tilburg University, Center for Economic Research.
    18. HERINGS, P. Jean-Jacques & MAULEON, Ana & VANNETELBOSCH, Vincent, 2014. "Stability of networks under level-K farsightedness," LIDAM Discussion Papers CORE 2014032, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. van Velzen, Bas & Hamers, Herbert & Solymosi, Tamas, 2008. "Core stability in chain-component additive games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 116-139, January.
    20. Marina Núñez & Tamás Solymosi, 2017. "Lexicographic allocations and extreme core payoffs: the case of assignment games," Annals of Operations Research, Springer, vol. 254(1), pages 211-234, July.

    More about this item

    Keywords

    Assignment game; Core; Von Neumann–Morgenstern stable set;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:148:y:2013:i:3:p:1282-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.