On big data-guided upstream business research and its knowledge management
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jbusres.2018.04.029
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ritu Agarwal & Vasant Dhar, 2014. "Editorial —Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research," Information Systems Research, INFORMS, vol. 25(3), pages 443-448, September.
- Stefan Debortoli & Oliver Müller & Jan Brocke, 2014. "Comparing Business Intelligence and Big Data Skills," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(5), pages 289-300, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Saumyaranjan Sahoo & Anil Kumar & Arvind Upadhyay, 2023. "How do green knowledge management and green technology innovation impact corporate environmental performance? Understanding the role of green knowledge acquisition," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 551-569, January.
- Akyildirim, Erdinc & Sensoy, Ahmet & Gulay, Guzhan & Corbet, Shaen & Salari, Hajar Novin, 2021. "Big data analytics, order imbalance and the predictability of stock returns," Journal of Multinational Financial Management, Elsevier, vol. 62(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
- Jinyang Zheng & Zhengling Qi & Yifan Dou & Yong Tan, 2019. "How Mega Is the Mega? Exploring the Spillover Effects of WeChat Using Graphical Model," Information Systems Research, INFORMS, vol. 30(4), pages 1343-1362, December.
- Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
- Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
- Issam Laguir & Sachin Modgil & Indranil Bose & Shivam Gupta & Rebecca Stekelorum, 2023. "Performance effects of analytics capability, disruption orientation, and resilience in the supply chain under environmental uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 1269-1293, May.
- Hajer Kefi & Sitesh Indra & Talel Abdessalem, 2016. "Social media marketing analytics : a multicultural approach applied to the beauty & cosmetic sector," Post-Print hal-01456580, HAL.
- Ahmed Abbasi & Jingjing Li & Donald Adjeroh & Marie Abate & Wanhong Zheng, 2019. "Don’t Mention It? Analyzing User-Generated Content Signals for Early Adverse Event Warnings," Information Systems Research, INFORMS, vol. 30(3), pages 1007-1028, September.
- Patrick Föll & Frédéric Thiesse, 2021. "Exploring Information Systems Curricula," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(6), pages 711-732, December.
- Godé, Cécile & Brion, Sébastien, 2024. "The affordance-actualization process of predictive analytics: Towards a configurational framework of a predictive policing system," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
- Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
- Luvai Motiwalla & Amit V. Deokar & Surendra Sarnikar & Angelika Dimoka, 2019. "Leveraging Data Analytics for Behavioral Research," Information Systems Frontiers, Springer, vol. 21(4), pages 735-742, August.
- Chatterjee, Sheshadri & Chaudhuri, Ranjan & Gupta, Shivam & Sivarajah, Uthayasankar & Bag, Surajit, 2023. "Assessing the impact of big data analytics on decision-making processes, forecasting, and performance of a firm," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Abhishek Behl & Pankaj Dutta & Stefan Lessmann & Yogesh K. Dwivedi & Samarjit Kar, 2019. "A conceptual framework for the adoption of big data analytics by e-commerce startups: a case-based approach," Information Systems and e-Business Management, Springer, vol. 17(2), pages 285-318, December.
- Shivam Gupta & Nezih Altay & Zongwei Luo, 2019. "Big data in humanitarian supply chain management: a review and further research directions," Annals of Operations Research, Springer, vol. 283(1), pages 1153-1173, December.
- Morgan Swink & Kejia Hu & Xiande Zhao, 2022. "Analytics applications, limitations, and opportunities in restaurant supply chains," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3710-3726, October.
- Jean-Sébastien Lacam & David Salvetat, 2021. "Big data and Smart data: two interdependent and synergistic digital policies within a virtuous data exploitation loop," Post-Print hal-03434863, HAL.
- Shet, Sateesh.V. & Poddar, Tanuj & Wamba Samuel, Fosso & Dwivedi, Yogesh K., 2021. "Examining the determinants of successful adoption of data analytics in human resource management – A framework for implications," Journal of Business Research, Elsevier, vol. 131(C), pages 311-326.
- Shu-Yi Liaw & Thi Mai Le, 2017. "Comparing Mediation Effect of Functional and Emotional Value in the Relationship between Pros of Applying Big Data," International Journal of Marketing Studies, Canadian Center of Science and Education, vol. 9(4), pages 66-75, August.
- Plamen Yankov & Stefka Petrova & Svetlana Todorova, 2021. "Digital Advantages for the Construction Industry," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 10(3), pages 21-32, December.
- Zhang, Yucheng & Zhang, Meng & Li, Jing & Liu, Guangjian & Yang, Miles M. & Liu, Siqi, 2021. "A bibliometric review of a decade of research: Big data in business research – Setting a research agenda," Journal of Business Research, Elsevier, vol. 131(C), pages 374-390.
More about this item
Keywords
Upstream business; Heterogeneous and multidimensional data; Data warehousing and mining; Big Data paradigm; Spatial-temporal dimensions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:89:y:2018:i:c:p:143-158. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.