IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v89y2018icp143-158.html
   My bibliography  Save this article

On big data-guided upstream business research and its knowledge management

Author

Listed:
  • Nimmagadda, Shastri L.
  • Reiners, Torsten
  • Wood, Lincoln C.

Abstract

The emerging Big Data integration imposes diverse challenges, compromising the sustainable business research practice. Heterogeneity, multi-dimensionality, velocity, and massive volumes that challenge Big Data paradigm may preclude the effective data and system integration processes. Business alignments get affected within and across joint ventures as enterprises attempt to adapt to changes in industrial environments rapidly. In the context of the Oil and Gas industry, we design integrated artefacts for a resilient multidimensional warehouse repository. With access to several decades of resource data in upstream companies, we incorporate knowledge-based data models with spatial-temporal dimensions in data schemas to minimize ambiguity in warehouse repository implementation. The design considerations ensure uniqueness and monotonic properties of dimensions, maintaining the connectivity between artefacts and achieving the business alignments. The multidimensional attributes envisage Big Data analysts a scope of business research with valuable new knowledge for decision support systems and adding further business values in geographic scales.

Suggested Citation

  • Nimmagadda, Shastri L. & Reiners, Torsten & Wood, Lincoln C., 2018. "On big data-guided upstream business research and its knowledge management," Journal of Business Research, Elsevier, vol. 89(C), pages 143-158.
  • Handle: RePEc:eee:jbrese:v:89:y:2018:i:c:p:143-158
    DOI: 10.1016/j.jbusres.2018.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296318302054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2018.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ritu Agarwal & Vasant Dhar, 2014. "Editorial —Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research," Information Systems Research, INFORMS, vol. 25(3), pages 443-448, September.
    2. Stefan Debortoli & Oliver Müller & Jan Brocke, 2014. "Comparing Business Intelligence and Big Data Skills," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(5), pages 289-300, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akyildirim, Erdinc & Sensoy, Ahmet & Gulay, Guzhan & Corbet, Shaen & Salari, Hajar Novin, 2021. "Big data analytics, order imbalance and the predictability of stock returns," Journal of Multinational Financial Management, Elsevier, vol. 62(C).
    2. Saumyaranjan Sahoo & Anil Kumar & Arvind Upadhyay, 2023. "How do green knowledge management and green technology innovation impact corporate environmental performance? Understanding the role of green knowledge acquisition," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 551-569, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bram Klievink & Bart-Jan Romijn & Scott Cunningham & Hans Bruijn, 2017. "Big data in the public sector: Uncertainties and readiness," Information Systems Frontiers, Springer, vol. 19(2), pages 267-283, April.
    2. Yi Yang & Kunpeng Zhang & Yangyang Fan, 2023. "sDTM: A Supervised Bayesian Deep Topic Model for Text Analytics," Information Systems Research, INFORMS, vol. 34(1), pages 137-156, March.
    3. Anke Joubert & Matthias Murawski & Markus Bick, 2023. "Measuring the Big Data Readiness of Developing Countries – Index Development and its Application to Africa," Information Systems Frontiers, Springer, vol. 25(1), pages 327-350, February.
    4. Aleš Popovič & Ray Hackney & Rana Tassabehji & Mauro Castelli, 2018. "The impact of big data analytics on firms’ high value business performance," Information Systems Frontiers, Springer, vol. 20(2), pages 209-222, April.
    5. Rosita Capurro & Michele Galeotti & Stefano Garzella, 2018. ""Mondo reale-tradizionale" e "mondo digitale", strategie aziendali e web intelligence: il futuro del controllo e della gestione delle informazioni," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(2 Suppl.), pages 83-111.
    6. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    7. Mazanec, Josef A., 2020. "Hidden theorizing in big data analytics: With a reference to tourism design research," Annals of Tourism Research, Elsevier, vol. 83(C).
    8. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    9. Yuan Li & William J. Kettinger, 2022. "Testing the Relationship Between Information and Knowledge in Computer-Aided Decision-Making," Information Systems Frontiers, Springer, vol. 24(6), pages 1827-1843, December.
    10. Jinyang Zheng & Zhengling Qi & Yifan Dou & Yong Tan, 2019. "How Mega Is the Mega? Exploring the Spillover Effects of WeChat Using Graphical Model," Information Systems Research, INFORMS, vol. 30(4), pages 1343-1362, December.
    11. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    12. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    13. Giorgi Shuradze & Yevgen Bogodistov & Heinz-Theo Wagner, 2018. "The Role Of Marketing-Enabled Data Analytics Capability And Organisational Agility For Innovation: Empirical Evidence From German Firms," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-32, May.
    14. Pratyush Bharati & Abhijit Chaudhury, 2019. "Assimilation of Big Data Innovation: Investigating the Roles of IT, Social Media, and Relational Capital," Information Systems Frontiers, Springer, vol. 21(6), pages 1357-1368, December.
    15. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    16. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    17. Issam Laguir & Sachin Modgil & Indranil Bose & Shivam Gupta & Rebecca Stekelorum, 2023. "Performance effects of analytics capability, disruption orientation, and resilience in the supply chain under environmental uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 1269-1293, May.
    18. Hajer Kefi & Sitesh Indra & Talel Abdessalem, 2016. "Social media marketing analytics : a multicultural approach applied to the beauty & cosmetic sector," Post-Print hal-01456580, HAL.
    19. Ahmed Abbasi & Jingjing Li & Donald Adjeroh & Marie Abate & Wanhong Zheng, 2019. "Don’t Mention It? Analyzing User-Generated Content Signals for Early Adverse Event Warnings," Information Systems Research, INFORMS, vol. 30(3), pages 1007-1028, September.
    20. Bei Yan & Feng Mai & Chaojiang Wu & Rui Chen & Xiaolin Li, 2024. "A Computational Framework for Understanding Firm Communication During Disasters," Information Systems Research, INFORMS, vol. 35(2), pages 590-608, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:89:y:2018:i:c:p:143-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.