A Bayesian network approach to examining key success factors of mobile games
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jbusres.2012.02.036
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gupta, Sumeet & Kim, Hee W., 2008. "Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities," European Journal of Operational Research, Elsevier, vol. 190(3), pages 818-833, November.
- Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sreejesh, S. & Ghosh, Tathagata & Dwivedi, Yogesh K., 2021. "Moving beyond the content: The role of contextual cues in the effectiveness of gamification of advertising," Journal of Business Research, Elsevier, vol. 132(C), pages 88-101.
- Yi, Jisu & Lee, Youseok & Kim, Sang-Hoon, 2019. "Determinants of growth and decline in mobile game diffusion," Journal of Business Research, Elsevier, vol. 99(C), pages 363-372.
- Qing Yang & Yanxia Zhu & Xingxing Liu & Lingmei Fu & Qianqian Guo, 2019. "Bayesian-Based NIMBY Crisis Transformation Path Discovery for Municipal Solid Waste Incineration in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
- Ghosh, Tathagata & Sreejesh, S. & Dwivedi, Yogesh K., 2022. "Brand logos versus brand names: A comparison of the memory effects of textual and pictorial brand elements placed in computer games," Journal of Business Research, Elsevier, vol. 147(C), pages 222-235.
- Lee, Young-Jin & Ghasemkhani, Hossein & Xie, Karen & Tan, Yong, 2021. "Switching decision, timing, and app performance: An empirical analysis of mobile app developers’ switching behavior between monetization strategies," Journal of Business Research, Elsevier, vol. 127(C), pages 332-345.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pelau Corina & Barbul Maria, 2021. "Consumers’ perception on the use of cognitive computing," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 639-649, December.
- Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
- Fredström, Ashkan & Parida, Vinit & Wincent, Joakim & Sjödin, David & Oghazi, Pejvak, 2022. "What is the Market Value of Artificial Intelligence and Machine Learning? The Role of Innovativeness and Collaboration for Performance," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
- Pawel Rymarczyk & Piotr Golabek & Sylwia Skrzypek - Ahmed & Magdalena Rzemieniak, 2021. "Profiling and Segmenting Clients with the Use of Machine Learning Algorithms," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 513-522.
- Coussement, Kristof & De Bock, Koen W., 2013.
"Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning,"
Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
- K. Coussement & K.W. de Bock, 2013. "Customer Churn Prediction in the Online Gambling Industry: The Beneficial Effect of Ensemble Learning," Post-Print hal-00788063, HAL.
- Ron S. Kenett & Giancarlo Manzi & Carmit Rapaport & Silvia Salini, 2022. "Integrated Analysis of Behavioural and Health COVID-19 Data Combining Bayesian Networks and Structural Equation Models," IJERPH, MDPI, vol. 19(8), pages 1-26, April.
- Liu, Hongju & Pancras, Joseph & Houtz, Malcolm, 2015. "Managing Customer Acquisition Risk Using Co-operative Databases," Journal of Interactive Marketing, Elsevier, vol. 29(C), pages 39-56.
- Laura Toschi & Elisa Ughetto & Andrea Fronzetti Colladon, 2023. "The identity of social impact venture capitalists: exploring social linguistic positioning and linguistic distinctiveness through text mining," Small Business Economics, Springer, vol. 60(3), pages 1249-1280, March.
- Ekici, Ahmet & Önsel Ekici, Şule, 2021. "Understanding and managing complexity through Bayesian network approach: The case of bribery in business transactions," Journal of Business Research, Elsevier, vol. 129(C), pages 757-773.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021.
"Optimal Targeting in Fundraising: A Machine-Learning Approach,"
Economics working papers
2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," CESifo Working Paper Series 9037, CESifo.
- Madhukar Chhimwal & Saurabh Agrawal & Girish Kumar, 2021. "Measuring Circular Supply Chain Risk: A Bayesian Network Methodology," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
- V Kumar & Amalesh Sharma & Shaphali Gupta, 2017. "Accessing the influence of strategic marketing research on generating impact: moderating roles of models, journals, and estimation approaches," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 164-185, March.
- Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014.
"Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees,"
Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
- K. Coussement & F.A.M. van den Bossche & K.W. de Bock, 2012. "Data Accuracy's Impact on Segmentation Performance: Benchmarking RFM Analysis, Logistic Regression, and Decision Trees," Post-Print hal-00788060, HAL.
- Esma Nur Cinicioglu & Gül Huyugüzel Kışla & A. Özlem Önder & Y. Gülnur Muradoğlu, 2024. "The Changing Behavior of the European Credit Default Swap Spreads During the Covid-19 Pandemic: A Bayesian Network Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1213-1254, March.
- Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
- Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
- Tamayo-Torres, Javier & Gutierrez-Gutierrez, Leopoldo & Ruiz-Moreno, Antonia, 2014. "The relationship between exploration and exploitation strategies, manufacturing flexibility and organizational learning: An empirical comparison between Non-ISO and ISO certified firms," European Journal of Operational Research, Elsevier, vol. 232(1), pages 72-86.
- Ünsal-Altuncan, Izel & Vanhoucke, Mario, 2024. "A hybrid forecasting model to predict the duration and cost performance of projects with Bayesian Networks," European Journal of Operational Research, Elsevier, vol. 315(2), pages 511-527.
- Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Hossein Etemadi & Ahmad Ahmadpour & Seyed Moshashaei, 2015. "Earnings Per Share Forecast Using Extracted Rules from Trained Neural Network by Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 55-63, June.
More about this item
Keywords
Mobile games; Bayesian networks; New product performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:66:y:2013:i:9:p:1353-1359. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.