IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v66y2013i9p1353-1359.html
   My bibliography  Save this article

A Bayesian network approach to examining key success factors of mobile games

Author

Listed:
  • Park, Hyun Jung
  • Kim, Sang-Hoon

Abstract

As mobile game business becomes one of the most lucrative as well as fast-growing businesses, examining key success factors in this industry is of great interest. Utilizing a research method called Bayesian network, this paper models and tests interrelationship among product, marketing, consumer and competition variables. The current study surveys experts who launch many games in Korea. The three most crucial factors for successful games turn out to be targeting, awareness and consumers' willingness to pay (WTP). Many of the other factors influence the performance of games via these three factors. This paper not only investigates into the sensitivity of game performance to targeting and awareness levels but also examines the influences of product/marketing variables on consumers' first impression or willingness to pay. The findings on the roles of product or marketing factors that affect consumers' perceptions and responses, thereby competitiveness and success, will help game makers and distributors make reasonable decisions in allocating corporate resources more efficiently.

Suggested Citation

  • Park, Hyun Jung & Kim, Sang-Hoon, 2013. "A Bayesian network approach to examining key success factors of mobile games," Journal of Business Research, Elsevier, vol. 66(9), pages 1353-1359.
  • Handle: RePEc:eee:jbrese:v:66:y:2013:i:9:p:1353-1359
    DOI: 10.1016/j.jbusres.2012.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296312000689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2012.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
    2. Gupta, Sumeet & Kim, Hee W., 2008. "Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities," European Journal of Operational Research, Elsevier, vol. 190(3), pages 818-833, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sreejesh, S. & Ghosh, Tathagata & Dwivedi, Yogesh K., 2021. "Moving beyond the content: The role of contextual cues in the effectiveness of gamification of advertising," Journal of Business Research, Elsevier, vol. 132(C), pages 88-101.
    2. Yi, Jisu & Lee, Youseok & Kim, Sang-Hoon, 2019. "Determinants of growth and decline in mobile game diffusion," Journal of Business Research, Elsevier, vol. 99(C), pages 363-372.
    3. Qing Yang & Yanxia Zhu & Xingxing Liu & Lingmei Fu & Qianqian Guo, 2019. "Bayesian-Based NIMBY Crisis Transformation Path Discovery for Municipal Solid Waste Incineration in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    4. Ghosh, Tathagata & Sreejesh, S. & Dwivedi, Yogesh K., 2022. "Brand logos versus brand names: A comparison of the memory effects of textual and pictorial brand elements placed in computer games," Journal of Business Research, Elsevier, vol. 147(C), pages 222-235.
    5. Lee, Young-Jin & Ghasemkhani, Hossein & Xie, Karen & Tan, Yong, 2021. "Switching decision, timing, and app performance: An empirical analysis of mobile app developers’ switching behavior between monetization strategies," Journal of Business Research, Elsevier, vol. 127(C), pages 332-345.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelau Corina & Barbul Maria, 2021. "Consumers’ perception on the use of cognitive computing," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 639-649, December.
    2. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
    3. Pawel Rymarczyk & Piotr Golabek & Sylwia Skrzypek - Ahmed & Magdalena Rzemieniak, 2021. "Profiling and Segmenting Clients with the Use of Machine Learning Algorithms," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 513-522.
    4. Laura Toschi & Elisa Ughetto & Andrea Fronzetti Colladon, 2023. "The identity of social impact venture capitalists: exploring social linguistic positioning and linguistic distinctiveness through text mining," Small Business Economics, Springer, vol. 60(3), pages 1249-1280, March.
    5. Ekici, Ahmet & Önsel Ekici, Şule, 2021. "Understanding and managing complexity through Bayesian network approach: The case of bribery in business transactions," Journal of Business Research, Elsevier, vol. 129(C), pages 757-773.
    6. V Kumar & Amalesh Sharma & Shaphali Gupta, 2017. "Accessing the influence of strategic marketing research on generating impact: moderating roles of models, journals, and estimation approaches," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 164-185, March.
    7. Esma Nur Cinicioglu & Gül Huyugüzel Kışla & A. Özlem Önder & Y. Gülnur Muradoğlu, 2024. "The Changing Behavior of the European Credit Default Swap Spreads During the Covid-19 Pandemic: A Bayesian Network Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1213-1254, March.
    8. Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
    9. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    10. Ünsal-Altuncan, Izel & Vanhoucke, Mario, 2024. "A hybrid forecasting model to predict the duration and cost performance of projects with Bayesian Networks," European Journal of Operational Research, Elsevier, vol. 315(2), pages 511-527.
    11. Wei Li & Wolfgang Karl Hardle & Stefan Lessmann, 2022. "A Data-driven Case-based Reasoning in Bankruptcy Prediction," Papers 2211.00921, arXiv.org.
    12. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    13. David Dilts & James Moore, 2009. "Do Arbitrators Use Just Cause Standards in Deciding Discharge and Discipline Cases? A Test," Journal of Labor Research, Springer, vol. 30(3), pages 245-261, September.
    14. Long Chen & Xiaokun Liu & Peng Jing, 2023. "Do Unprecedented Gasoline Prices Affect the Consumer Switching to New Energy Vehicles? An Integrated Social Cognitive Theory Model," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    15. Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    16. Deutsch, Eliza S. & Alameddine, Ibrahim & Qian, Song S., 2020. "Using structural equation modeling to better understand microcystis biovolume dynamics in a mediterranean hypereutrophic reservoir," Ecological Modelling, Elsevier, vol. 435(C).
    17. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    18. Shah, Denish & Murthi, B.P.S., 2021. "Marketing in a data-driven digital world: Implications for the role and scope of marketing," Journal of Business Research, Elsevier, vol. 125(C), pages 772-779.
    19. Gang Chen & Shuaiyong Xiao & Chenghong Zhang & Huimin Zhao, 2023. "A Theory-Driven Deep Learning Method for Voice Chat–Based Customer Response Prediction," Information Systems Research, INFORMS, vol. 34(4), pages 1513-1532, December.
    20. Kamble, Sachin S. & Gunasekaran, Angappa & Kumar, Vikas & Belhadi, Amine & Foropon, Cyril, 2021. "A machine learning based approach for predicting blockchain adoption in supply Chain," Technological Forecasting and Social Change, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:66:y:2013:i:9:p:1353-1359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.