IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v154y2023ics0148296322007196.html
   My bibliography  Save this article

A general Best-Worst method considering interdependency with application to innovation and technology assessment at NASA

Author

Listed:
  • Tavana, Madjid
  • Mina, Hassan
  • Santos-Arteaga, Francisco J.

Abstract

The Best-Worst Method (BWM) is a relatively new and popular method for obtaining criteria weights in multi-criteria decision-making. The BWM uses very few comparisons and produces consistent comparisons, leading to more reliable criteria weights. Despite its popularity and reliability, the decision criteria in the BWM are considered independent of one another. However, in most real-world problems, the decision criteria are interdependent. We propose a general form of the BWM (GBWM) to consider the interdependencies and the intensity of the dependencies among the decision criteria in producing relative influence-intensity weights. The new GBWM is simple to understand and implement and delivers reliable results with a high level of consistency in problems with interdependent decision criteria. The results are more reliable than BWM in problems with interdependencies because we consider both their existence and the intensity of the dependencies. In addition, the results are equally or more consistent than BWM because we start with a BWM solution and adjust the BWM solution with a completely consistent vector. We also present a case study for evaluating and prioritizing advanced technology and innovation projects at NASA to demonstrate the applicability of the proposed method.

Suggested Citation

  • Tavana, Madjid & Mina, Hassan & Santos-Arteaga, Francisco J., 2023. "A general Best-Worst method considering interdependency with application to innovation and technology assessment at NASA," Journal of Business Research, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:jbrese:v:154:y:2023:i:c:s0148296322007196
    DOI: 10.1016/j.jbusres.2022.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296322007196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2022.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madjid Tavana, 2003. "CROSS: A Multicriteria Group-Decision-Making Model for Evaluating and Prioritizing Advanced-Technology Projects at NASA," Interfaces, INFORMS, vol. 33(3), pages 40-56, June.
    2. Yasmin, Mariam & Tatoglu, Ekrem & Kilic, Huseyin Selcuk & Zaim, Selim & Delen, Dursun, 2020. "Big data analytics capabilities and firm performance: An integrated MCDM approach," Journal of Business Research, Elsevier, vol. 114(C), pages 1-15.
    3. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    4. Perry C. Y. Liu & Huai-Wei Lo & James J. H. Liou, 2020. "A Combination of DEMATEL and BWM-Based ANP Methods for Exploring the Green Building Rating System in Taiwan," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    5. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    6. Heo, Cindy Yoonjoung & Kim, Bona & Park, Kwangsoo & Back, Robin M., 2022. "A comparison of Best-Worst Scaling and Likert Scale methods on peer-to-peer accommodation attributes," Journal of Business Research, Elsevier, vol. 148(C), pages 368-377.
    7. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    8. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    9. Paul, Sanjoy Kumar & Chowdhury, Priyabrata & Moktadir, Md. Abdul & Lau, Kwok Hung, 2021. "Supply chain recovery challenges in the wake of COVID-19 pandemic," Journal of Business Research, Elsevier, vol. 136(C), pages 316-329.
    10. Jafari-Sadeghi, Vahid & Amoozad Mahdiraji, Hannan & Devalle, Alain & Pellicelli, Anna Claudia, 2022. "Somebody is hiding something: Disentangling interpersonal level drivers and consequences of knowledge hiding in international entrepreneurial firms," Journal of Business Research, Elsevier, vol. 139(C), pages 383-396.
    11. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    12. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    13. Jen-Jen Yang & Yen-Ching Chuang & Huai-Wei Lo & Ting-I Lee, 2020. "A Two-Stage MCDM Model for Exploring the Influential Relationships of Sustainable Sports Tourism Criteria in Taichung City," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parolin, Giácomo & McAloone, Tim C. & Pigosso, Daniela C.A., 2024. "How can technology assessment tools support sustainable innovation? A systematic literature review and synthesis," Technovation, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    2. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    3. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    5. Chong Li & He Huang & Ya Luo, 2022. "An Integrated Two-Dimension Linguistic Intuitionistic Fuzzy Decision-Making Approach for Unmanned Aerial Vehicle Supplier Selection," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    6. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    7. Milena Lakicevic & Bojan Srdjevic, 2022. "An Approach to Developing the Multicriteria Optimal Forest Management Plan: The “Fruska Gora” National Park Case Study," Land, MDPI, vol. 11(10), pages 1-14, September.
    8. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    9. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    10. Vineet Kaushik & Shobha Tewari, 2023. "Modeling Opportunity Indicators Fostering Social Entrepreneurship: A Hybrid Delphi and Best-Worst Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 667-698, August.
    11. Gholamreza Haseli & Reza Sheikh & Jianqiang Wang & Hana Tomaskova & Erfan Babaee Tirkolaee, 2021. "A Novel Approach for Group Decision Making Based on the Best–Worst Method (G-BWM): Application to Supply Chain Management," Mathematics, MDPI, vol. 9(16), pages 1-20, August.
    12. Wu, Qun & Liu, Xinwang & Zhou, Ligang & Qin, Jindong & Rezaei, Jafar, 2024. "An analytical framework for the best–worst method," Omega, Elsevier, vol. 123(C).
    13. Murad, C.A. & Bellinello, M.M. & Silva, A.J. & Netto, A. Caminada & de Souza, G.F.M. & Nabeta, S.I., 2022. "A novel methodology employed for ranking and consolidating performance indicators in holding companies with multiple power plants based on multi-criteria decision-making method," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Kheybari, Siamak & Javdanmehr, Mahsa & Rezaie, Fariba Mahdi & Rezaei, Jafar, 2021. "Corn cultivation location selection for bioethanol production: An application of BWM and extended PROMETHEE II," Energy, Elsevier, vol. 228(C).
    15. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    16. Hamid Reza Fazeli & Qingjin Peng, 2023. "Integrated approaches of BWM-QFD and FUCOM-QFD for improving weighting solution of design matrix," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1003-1020, March.
    17. Fumin Deng & Yanjie Li & Huirong Lin & Jinrui Miao & Xuedong Liang, 2020. "A BWM-TOPSIS Hazardous Waste Inventory Safety Risk Evaluation," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    18. Arman Nedjati & Mohammad Yazdi & Rouzbeh Abbassi, 2022. "A sustainable perspective of optimal site selection of giant air-purifiers in large metropolitan areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8747-8778, June.
    19. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    20. Dehnavi, Morteza Narimani & Yazdian, Seyed Ahmad & Sadjadi, Seyed Jafar, 2023. "Evaluating effective criteria on customer satisfaction using the best-worst method and optimizing resource allocation, case study Iran aseman airlines," Journal of Air Transport Management, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:154:y:2023:i:c:s0148296322007196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.