IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v131y2021icp495-519.html
   My bibliography  Save this article

Supply network design to address United Nations Sustainable Development Goals: A case study of blockchain implementation in Thai fish industry

Author

Listed:
  • Tsolakis, Naoum
  • Niedenzu, Denis
  • Simonetto, Melissa
  • Dora, Manoj
  • Kumar, Mukesh

Abstract

Sustainable Development Goals present an opportunity for industries to (re)design their supply chains. It is understood that digital technologies like blockchain can be helpful in achieving certain Sustainable Development Goals linked to livelihoods, food security, and the environment, by identifying issues and implementing interventions in real-time. However, there is limited understanding over data structure requirements for blockchain technology implementation in digitally-enabled food supply chains. Therefore, this research studies the design of blockchain-centric food supply chains that promote Sustainable Development Goals, within the context of the Thai fish industry. Key findings suggest that data asymmetry exists in supply chains to achieve Sustainable Development Goals. This research presents four design principles and an integrated technology implementation framework, derived from empirical data, for blockchain-centric food supply chains. The research outcome contributes to the supply chain management field and could ultimately impact the resilience of fishery ecosystems and the achievement of Sustainable Development Goals.

Suggested Citation

  • Tsolakis, Naoum & Niedenzu, Denis & Simonetto, Melissa & Dora, Manoj & Kumar, Mukesh, 2021. "Supply network design to address United Nations Sustainable Development Goals: A case study of blockchain implementation in Thai fish industry," Journal of Business Research, Elsevier, vol. 131(C), pages 495-519.
  • Handle: RePEc:eee:jbrese:v:131:y:2021:i:c:p:495-519
    DOI: 10.1016/j.jbusres.2020.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296320304914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2020.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    2. Sachin Kamble & Angappa Gunasekaran & Himanshu Arha, 2019. "Understanding the Blockchain technology adoption in supply chains-Indian context," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2009-2033, April.
    3. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    4. Sener, Abdurrezzak & Barut, Mehmet & Oztekin, Asil & Avcilar, Mutlu Yuksel & Yildirim, Mehmet Bayram, 2019. "The role of information usage in a retail supply chain: A causal data mining and analytical modeling approach," Journal of Business Research, Elsevier, vol. 99(C), pages 87-104.
    5. Mahtab Kouhizadeh & Joseph Sarkis, 2018. "Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    6. Min, Hokey, 2019. "Blockchain technology for enhancing supply chain resilience," Business Horizons, Elsevier, vol. 62(1), pages 35-45.
    7. Jensen, Michael C. & Meckling, William H., 1976. "Theory of the firm: Managerial behavior, agency costs and ownership structure," Journal of Financial Economics, Elsevier, vol. 3(4), pages 305-360, October.
    8. Michael Gibbert & Winfried Ruigrok & Barbara Wicki, 2008. "What passes as a rigorous case study?," Strategic Management Journal, Wiley Blackwell, vol. 29(13), pages 1465-1474, December.
    9. Nong, Duy, 2019. "Potential economic impacts of global wild catch fishery decline in Southeast Asia and South America," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 213-226.
    10. P.K. Viswanathan, 2008. "Emerging Smallholder Rubber Farming Systems in India and Thailand: A Comparative Economic Analysis," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 5(2), pages 1-19, December.
    11. Selena Ahmed & Noah ten Broek, 2017. "Blockchain could boost food security," Nature, Nature, vol. 550(7674), pages 43-43, October.
    12. Kohtamäki, Marko & Parida, Vinit & Oghazi, Pejvak & Gebauer, Heiko & Baines, Tim, 2019. "Digital servitization business models in ecosystems: A theory of the firm," Journal of Business Research, Elsevier, vol. 104(C), pages 380-392.
    13. Guillaume Chapron, 2017. "The environment needs cryptogovernance," Nature, Nature, vol. 545(7655), pages 403-405, May.
    14. Choi, Tsan-Ming & Guo, Shu & Luo, Suyuan, 2020. "When blockchain meets social-media: Will the result benefit social media analytics for supply chain operations management?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    15. Viswanathan, P.K., 2008. "Emerging Smallholder Rubber Farming Systems in India and Thailand: A Comparative Economic Analysis," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 5(2), pages 1-19, December.
    16. Srinagesh Gavirneni & Roman Kapuscinski & Sridhar Tayur, 1999. "Value of Information in Capacitated Supply Chains," Management Science, INFORMS, vol. 45(1), pages 16-24, January.
    17. Dusko Knezevic, 2018. "Impact of Blockchain Technology Platform in Changing the Financial Sector and Other Industries," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 14(1), pages 109-120.
    18. Johanson, Jan & Mattsson, Lars-Gunnar, 1987. "Interorganizational relations in industrial systems : a network approach compared with the transaction cost approach," Working Papers 1987:7, Uppsala University, Department of Business Studies.
    19. Klasen, Stephan & Lechtenfeld, Tobias & Povel, Felix, 2015. "A Feminization of Vulnerability? Female Headship, Poverty, and Vulnerability in Thailand and Vietnam," World Development, Elsevier, vol. 71(C), pages 36-53.
    20. Marcos Paulo Valadares de Oliveira & Robert Handfield, 2019. "Analytical foundations for development of real-time supply chain capabilities," International Journal of Production Research, Taylor & Francis Journals, vol. 57(5), pages 1571-1589, March.
    21. Henry M. Kim & Marek Laskowski, 2018. "Toward an ontology‐driven blockchain design for supply‐chain provenance," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(1), pages 18-27, January.
    22. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    4. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
    5. Manu Sharma & Sudhanshu Joshi & Sunil Luthra & Anil Kumar, 2022. "Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains," Operations Management Research, Springer, vol. 15(1), pages 268-281, June.
    6. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    7. Leng, Jiewu & Ruan, Guolei & Jiang, Pingyu & Xu, Kailin & Liu, Qiang & Zhou, Xueliang & Liu, Chao, 2020. "Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Vineet Paliwal & Shalini Chandra & Suneel Sharma, 2020. "Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    9. Gupta, Shivam & Modgil, Sachin & Choi, Tsan-Ming & Kumar, Ajay & Antony, Jiju, 2023. "Influences of artificial intelligence and blockchain technology on financial resilience of supply chains," International Journal of Production Economics, Elsevier, vol. 261(C).
    10. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2020. "The Unknown Potential of Blockchain for Sustainable Supply Chains," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    11. Sharfuddin Ahmed Khan & Muhammad Shujaat Mubarik & Simonov Kusi‐Sarpong & Himanshu Gupta & Syed Imran Zaman & Mobashar Mubarik, 2022. "Blockchain technologies as enablers of supply chain mapping for sustainable supply chains," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3742-3756, December.
    12. Michael Wang & Bill Wang & Ahmad Abareshi, 2020. "Blockchain Technology and Its Role in Enhancing Supply Chain Integration Capability and Reducing Carbon Emission: A Conceptual Framework," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    13. Sachin Kumar Mangla & Yiğit Kazançoğlu & Abdullah Yıldızbaşı & Cihat Öztürk & Ahmet Çalık, 2022. "A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3693-3716, December.
    14. Yuling Sun & Xiaomei Song & Yihao Jiang & Jian Guo, 2023. "Strategy Analysis of Fresh Agricultural Enterprises in a Competitive Circumstance: The Impact of Blockchain and Consumer Traceability Preferences," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    15. Seyyed-Alireza Radmanesh & Alireza Haji & Omid Fatahi Valilai, 2023. "Blockchain-Based Architecture for a Sustainable Supply Chain in Cloud Architecture," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    16. Kirti Nayal & Rakesh D. Raut & Balkrishna E. Narkhede & Pragati Priyadarshinee & Gajanan B. Panchal & Vidyadhar V. Gedam, 2023. "Antecedents for blockchain technology-enabled sustainable agriculture supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 293-337, August.
    17. David Teh & Tehmina Khan & Brian Corbitt & Chin Eang Ong, 2020. "Sustainability strategy and blockchain-enabled life cycle assessment: a focus on materials industry," Environment Systems and Decisions, Springer, vol. 40(4), pages 605-622, December.
    18. Summer K. Mohamed & Sandra Haddad & Mahmoud Barakat & Bojan Rosi, 2023. "Blockchain Technology Adoption for Improved Environmental Supply Chain Performance: The Mediation Effect of Supply Chain Resilience, Customer Integration, and Green Customer Information Sharing," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    19. Zhu, Qingyun & Bai, Chunguang & Sarkis, Joseph, 2022. "Blockchain technology and supply chains: The paradox of the atheoretical research discourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Sahebi, Iman Ghasemian & Mosayebi, Alireza & Masoomi, Behzad & Marandi, Fatemeh, 2022. "Modeling the enablers for blockchain technology adoption in renewable energy supply chain," Technology in Society, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:131:y:2021:i:c:p:495-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.