IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v99y2022ics0969699722000023.html
   My bibliography  Save this article

Estimation of aircraft fuel consumption by modeling flight data from avionics systems

Author

Listed:
  • Huang, Chenyu
  • Cheng, Xiaoyue

Abstract

Accurate and economic estimation of aircraft fuel consumption is fundamental for optimizing aviation operations, including emission reduction, flight route planning, and fuel management. Numerous literature presented mathematical models to estimate aircraft fuel consumption but often neglected the challenges of applying those methods in aviation operations. This paper explores a novel strategy to estimate aircraft fuel consumption by modeling flight data from onboard flight data recorder (FDR) and automatic dependent surveillance – broadcast (ADS-B). The Classification and Regression Tree (CART) and Neural Networks (NNs) are adopted for modeling. CART and NN models are developed using FDR data; ADS-B data are used to assess the model performance. The result indicates that the CART model performs better when inputs contain errors and missing values, and the ADS-B data could be used to estimate aircraft fuel consumption as a less-expensive and more convenient strategy compared to the FDR data.

Suggested Citation

  • Huang, Chenyu & Cheng, Xiaoyue, 2022. "Estimation of aircraft fuel consumption by modeling flight data from avionics systems," Journal of Air Transport Management, Elsevier, vol. 99(C).
  • Handle: RePEc:eee:jaitra:v:99:y:2022:i:c:s0969699722000023
    DOI: 10.1016/j.jairtraman.2022.102181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722000023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merkert, Rico & Swidan, Hassan, 2019. "Flying with(out) a safety net: Financial hedging in the airline industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 206-219.
    2. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdan, Sadeque & Jouini, Oualid & Cheaitou, Ali & Jemai, Zied & Granberg, Tobias Andersson & Josefsson, Billy, 2022. "Air traffic flow management under emission policies: Analyzing the impact of sustainable aviation fuel and different carbon prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 14-40.
    2. Zheng Zhang & Dongyue Guo & Shizhong Zhou & Jianwei Zhang & Yi Lin, 2023. "Flight trajectory prediction enabled by time-frequency wavelet transform," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    2. Swidan, Hassan & Merkert, Rico & Kwon, Oh Kang, 2019. "Designing optimal jet fuel hedging strategies for airlines – Why hedging will not always reduce risk exposure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 20-36.
    3. Huang, Robert & Kahn, Matthew E., 2024. "An economic analysis of United States public transit carbon emissions dynamics," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    4. Lyu, Chen & Liu, Xiaoman & Wang, Zhen & Yang, Lu & Liu, Hao & Yang, Nan & Xu, Shaodong & Cao, Libin & Zhang, Zhe & Pang, Lingyun & Zhang, Li & Cai, Bofeng, 2023. "An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China," Energy, Elsevier, vol. 262(PB).
    5. Hong, Seock-Jin & Savoie, Michael & Joiner, Steve & Kincaid, Timothy, 2022. "Analysis of airline employees’ perceptions of corporate preparedness for COVID-19 disruptions to airline operations," Transport Policy, Elsevier, vol. 119(C), pages 45-55.
    6. Bauer, Linus Benjamin & Bloch, Daniel & Merkert, Rico, 2020. "Ultra Long-Haul: An emerging business model accelerated by COVID-19," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Wen, Xin & Sun, Xuting & Sun, Yige & Yue, Xiaohang, 2021. "Airline crew scheduling: Models and algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    8. Spiritus, Kevin & Lehmann, Etienne & Renes, Sander & Zoutman, Floris T., 0. "Optimal taxation with multiple incomes and types," Theoretical Economics, Econometric Society.
    9. Ming Liu & Yueyu Ding & Lihua Sun & Runchun Zhang & Yue Dong & Zihan Zhao & Yiting Wang & Chaoran Liu, 2023. "Green Airline-Fleet Assignment with Uncertain Passenger Demand and Fuel Price," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    10. Zhang, Peiwen & Ding, Rui, 2023. "How to achieve carbon abatement in aviation with hybrid mechanism? A stochastic evolutionary game model," Energy, Elsevier, vol. 285(C).
    11. Liao, Weijun & Wang, Chunan, 2021. "Airline emissions charges and airline networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    12. Philip G. Gayle & Ying Lin, 2021. "Cost Pass‐Through In Commercial Aviation: Theory And Evidence," Economic Inquiry, Western Economic Association International, vol. 59(2), pages 803-828, April.
    13. Ahmed, Sheikh Shahriar & Fountas, Grigorios & Eker, Ugur & Still, Stephen E. & Anastasopoulos, Panagiotis Ch, 2021. "An exploratory empirical analysis of willingness to hire and pay for flying taxis and shared flying car services," Journal of Air Transport Management, Elsevier, vol. 90(C).
    14. Swidan, Hassan & Merkert, Rico, 2019. "The relative effect of operational hedging on airline operating costs," Transport Policy, Elsevier, vol. 80(C), pages 70-77.
    15. Dixit, Aasheesh & Kumar, Patanjal & Jakhar, Suresh Kumar, 2022. "Effectiveness of carbon tax and congestion cost in improving the airline industry greening level and welfare: A case of two competing airlines," Journal of Air Transport Management, Elsevier, vol. 100(C).
    16. Samunderu, E. & Perret, J.K. & Geller, G., 2023. "The economic value rationale of fuel hedging: An empirical perspective from the global airline industry," Journal of Air Transport Management, Elsevier, vol. 106(C).
    17. Manoela Cabo & Elton Fernandes & Paulo Alonso & Ricardo Rodrigues Pacheco & Felipe Fagundes, 2019. "Energy Effectiveness of Jet Fuel Utilization in Brazilian Air Transport," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    18. Tsai, Ming-Chih & Merkert, Rico & Tsai, Mei-Ting & Lin, Shiau-Chi, 2021. "Towards a taxonomy-based preferred-customer model for suppliers in air cargo express service markets," Journal of Air Transport Management, Elsevier, vol. 90(C).
    19. Singh, Jagroop & Sharma, Somesh Kumar & Srivastava, Rajnish, 2019. "What drives Indian Airlines operational expense: An econometric model," Journal of Air Transport Management, Elsevier, vol. 77(C), pages 32-38.
    20. Leandro, Francisco & Andrade, Antonio R. & Kalakou, Sofia, 2021. "Designing aviation networks under Public Service Obligations (PSO): A case study in Greece," Journal of Air Transport Management, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:99:y:2022:i:c:s0969699722000023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.