IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v89y2020ics0969699720304749.html
   My bibliography  Save this article

Impact of Continuous Climb Operations in ATC workload. Case-study Palma airport

Author

Listed:
  • Pérez-Castán, Javier A.
  • Asensio, Beatriz
  • Rodríguez-Sanz, à lvaro
  • Ho-Huu, Vinh
  • Sanz, Luis Pérez
  • Comendador, Fernando Gómez
  • Valdés, Rosa M.Arnaldo

Abstract

This research assesses the impact of the integration of Continuous Climb operations (CCOs) on Air Traffic Control (ATC) workload. The methodology encompasses different modules: CCO, standard departing and arriving trajectories extracted from an external database, an ad-hoc algorithm for detecting and solving conflicts, and an ATC-workload model with the inclusion of CCO-task modifications. Monte Carlo simulations evaluates different combinations of these modules. Then, a sensitivity analysis is performed to evaluate two parameters: the impact of the calibration of the maximum ATC workload and the percentage increase of the CCO tasks on the ATC workload. The methodology is applied to a case study at Palma airport in Spain. Extensive numerical simulations are executed based on the integration of CCOs into the system from 0% to 100%. The integration of CCOs implies the increase of the ATC workload in the Control Tower (TWR) and the reduction in the Approach Control Centre (APP). The sensitivity analysis shows that the decrease in the increase of CCO-task workload barely affects the number of CCOs that can be operated without exceeding the workload limits. Conversely, the reduction of the ATC workload calibration allows the integration of CCOs around 50% in the case of 90% TWR calibration and up to 100% in the case of 80%.

Suggested Citation

  • Pérez-Castán, Javier A. & Asensio, Beatriz & Rodríguez-Sanz, à lvaro & Ho-Huu, Vinh & Sanz, Luis Pérez & Comendador, Fernando Gómez & Valdés, Rosa M.Arnaldo, 2020. "Impact of Continuous Climb Operations in ATC workload. Case-study Palma airport," Journal of Air Transport Management, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:jaitra:v:89:y:2020:i:c:s0969699720304749
    DOI: 10.1016/j.jairtraman.2020.101890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699720304749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2020.101890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannis Simaiakis & Hamsa Balakrishnan, 2016. "A Queuing Model of the Airport Departure Process," Transportation Science, INFORMS, vol. 50(1), pages 94-109, February.
    2. Alexandre Jacquillat & Amedeo R. Odoni & Mort D. Webster, 2017. "Dynamic Control of Runway Configurations and of Arrival and Departure Service Rates at JFK Airport Under Stochastic Queue Conditions," Transportation Science, INFORMS, vol. 51(1), pages 155-176, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquillat, Alexandre & Odoni, Amedeo R., 2018. "A roadmap toward airport demand and capacity management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 168-185.
    2. Chandra, Aitichya & Verma, Ashish & Sooraj, K.P. & Padhi, Radhakant, 2023. "Modelling and assessment of the arrival and departure process at the terminal area: A case study of Chennai international airport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. Shone, Rob & Glazebrook, Kevin & Zografos, Konstantinos G., 2019. "Resource allocation in congested queueing systems with time-varying demand: An application to airport operations," European Journal of Operational Research, Elsevier, vol. 276(2), pages 566-581.
    4. Alexandre Jacquillat & Vikrant Vaze, 2018. "Interairline Equity in Airport Scheduling Interventions," Transportation Science, INFORMS, vol. 52(4), pages 941-964, August.
    5. Martina Zámková & Stanislav Rojík & Martin Prokop & Radek Stolín, 2022. "Factors Affecting the International Flight Delays and Their Impact on Airline Operation and Management and Passenger Compensations Fees in Air Transport Industry: Case Study of a Selected Airlines in ," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    6. Till Kösters & Marlena Meier & Gernot Sieg, 2023. "Effects of the use-it-or-lose-it rule on airline strategy and climate," Working Papers 36, Institute of Transport Economics, University of Muenster.
    7. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    8. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    9. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    10. Chu, Nana & Ng, Kam K.H. & Liu, Ye & Hon, Kai Kwong & Chan, Pak Wai & Li, Jianbing & Zhang, Xiaoge, 2024. "Assessment of approach separation with probabilistic aircraft wake vortex recognition via deep learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    11. Chen, Shuiwang & Wu, Lingxiao & Ng, Kam K.H. & Liu, Wei & Wang, Kun, 2024. "How airports enhance the environmental sustainability of operations: A critical review from the perspective of Operations Research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    12. Tang, Nga Yung Agnes & Wu, Cheng-Lung & Tan, David, 2020. "Evaluating the implementation of performance-based fuel uplift regulation for airline operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 47-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:89:y:2020:i:c:s0969699720304749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.