IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v17y2011i2p68-73.html
   My bibliography  Save this article

An AHP analysis of air traffic management with target windows

Author

Listed:
  • Castelli, Lorenzo
  • Pellegrini, Paola

Abstract

The main operational concept of Single European Sky ATM Research Programme is the notion of business trajectory. One possible implementation is based on the notion of a contract of objectives; an agreement among the main air traffic management actors on spatial and temporal intervals called target windows. These 4D windows are defined prior to flight departure by the airlines, airports and air navigation service providers to increase punctuality. We use an analytic hierarchy process to assess the opportunity of implementing this concept by considering the views of experts. The findings indicate that there are net benefits for airlines and air navigation service providers but not for airports

Suggested Citation

  • Castelli, Lorenzo & Pellegrini, Paola, 2011. "An AHP analysis of air traffic management with target windows," Journal of Air Transport Management, Elsevier, vol. 17(2), pages 68-73.
  • Handle: RePEc:eee:jaitra:v:17:y:2011:i:2:p:68-73
    DOI: 10.1016/j.jairtraman.2010.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699710000645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2010.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brunetta, Lorenzo & Righi, Luca & Andreatta, Giovanni, 1999. "An operations research model for the evaluation of an airport terminal: SLAM (simple landside aggregate model)," Journal of Air Transport Management, Elsevier, vol. 5(3), pages 161-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okwir, Simon & Ulfvengren, Pernilla & Angelis, Jannis & Ruiz, Felipe & Núñez Guerrero, Yilsy Maria, 2017. "Managing turnaround performance through Collaborative Decision Making," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 183-196.
    2. Sidiropoulos, Stavros & Majumdar, Arnab & Han, Ke, 2018. "A framework for the optimization of terminal airspace operations in Multi-Airport Systems," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 160-187.
    3. Rocha, Phelipe Medeiros da & Barros, Alexandre Pinheiro de & Silva, Glauco Barbosa da & Costa, Helder Gomes, 2016. "Analysis of the operational performance of brazilian airport terminals: A multicriteria approach with De Borda-AHP integration," Journal of Air Transport Management, Elsevier, vol. 51(C), pages 19-26.
    4. Havle, Celal Alpay & Kılıç, Bilal, 2019. "A hybrid approach based on the fuzzy AHP and HFACS framework for identifying and analyzing gross navigation errors during transatlantic flights," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 21-30.
    5. Zietsman, Davina & Vanderschuren, Marianne, 2014. "Analytic Hierarchy Process assessment for potential multi-airport systems – The case of Cape Town," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 41-49.
    6. Al-Ghzawi, Mamdouh & El-Rayes, Khaled, 2024. "Machine learning and multi-objective optimization methodology for planning construction phases of airport expansion projects," Journal of Air Transport Management, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lalita, T.R. & Manna, D.K. & Murthy, G.S.R., 2020. "Mathematical formulations for large scale check-in counter allocation problem," Journal of Air Transport Management, Elsevier, vol. 85(C).
    2. Rodríguez-Sanz, à lvaro & Fernández de Marcos, Alberto & Pérez-Castán, Javier A. & Comendador, Fernando Gómez & Arnaldo Valdés, Rosa & París Loreiro, à ngel, 2021. "Queue behavioural patterns for passengers at airport terminals: A machine learning approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    3. Giovanna Miceli Ronzani Borille & Anderson Ribeiro Correia, 2013. "Determining factors in airport baggage claim level of service," International Journal of Aviation Management, Inderscience Enterprises Ltd, vol. 2(1/2), pages 66-79.
    4. Zhou, Xuemei & Huang, Huang & Jia, Xinchang & Jiang, Nan, 2014. "Integrated passenger terminal capacity analysis under the capacity constraints of surrounding road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 194-203.
    5. Chaug-Ing Hsu & Ching-Cheng Chao & Nai-Wen Hsu, 2015. "Control strategies for departure process delays at airport passenger terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(2), pages 214-237, March.
    6. Thampan, Aromal & Sinha, Kapil & Gurjar, B.R. & Rajasekar, E., 2020. "Functional efficiency in airport terminals: A review on Overall and Stratified Service Quality," Journal of Air Transport Management, Elsevier, vol. 87(C).
    7. Wu, Paul Pao-Yen & Mengersen, Kerrie, 2013. "A review of models and model usage scenarios for an airport complex system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 124-140.
    8. Pitchforth, Jegar & Wu, Paul & Fookes, Clinton & Mengersen, Kerrie, 2015. "Processing passengers efficiently: An analysis of airport processing times for international passengers," Journal of Air Transport Management, Elsevier, vol. 49(C), pages 35-45.
    9. Turvey, R., 2000. "Infrastructure access pricing and lumpy investments," Utilities Policy, Elsevier, vol. 9(4), pages 207-218, December.
    10. Kim, Tae Hyun & Wu, Cheng-Lung & Koo, Tae-Ryang, 2017. "Implications of the ageing society and internationalisation for airport services: A perspective on passenger demand for personal space at airport terminals," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 84-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:17:y:2011:i:2:p:68-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.