IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v12y1996i1p57-71.html
   My bibliography  Save this article

Hailfinder: A Bayesian system for forecasting severe weather

Author

Listed:
  • Abramson, Bruce
  • Brown, John
  • Edwards, Ward
  • Murphy, Allan
  • Winkler, Robert L.

Abstract

No abstract is available for this item.

Suggested Citation

  • Abramson, Bruce & Brown, John & Edwards, Ward & Murphy, Allan & Winkler, Robert L., 1996. "Hailfinder: A Bayesian system for forecasting severe weather," International Journal of Forecasting, Elsevier, vol. 12(1), pages 57-71, March.
  • Handle: RePEc:eee:intfor:v:12:y:1996:i:1:p:57-71
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0169-2070(95)00664-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abramson, Bruce & Finizza, Anthony, 1995. "Probabilistic forecasts from probabilistic models: A case study in the oil market," International Journal of Forecasting, Elsevier, vol. 11(1), pages 63-72, March.
    2. Izhar Matzkevich & Bruce Abramson, 1995. "Decision Analytic Networks in Artificial Intelligence," Management Science, INFORMS, vol. 41(1), pages 1-22, January.
    3. Abramson, Bruce & Finizza, Anthony, 1991. "Using belief networks to forecast oil prices," International Journal of Forecasting, Elsevier, vol. 7(3), pages 299-315, November.
    4. Murphy, Allan H. & Winkler, Robert L., 1992. "Diagnostic verification of probability forecasts," International Journal of Forecasting, Elsevier, vol. 7(4), pages 435-455, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Changzhang & Zhou, You & Zhao, Qiang & Geng, Zhi, 2014. "Discovering and orienting the edges connected to a target variable in a DAG via a sequential local learning approach," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 252-266.
    2. Regnier, Eva, 2008. "Doing something about the weather," Omega, Elsevier, vol. 36(1), pages 22-32, February.
    3. Hao Zuo & Jinshen Jiang & Yun Zhou, 2024. "DAGOR: Learning DAGs via Topological Sorts and QR Factorization," Mathematics, MDPI, vol. 12(8), pages 1-16, April.
    4. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    5. Xu, Ping-Feng & Guo, Jianhua & Tang, Man-Lai, 2011. "Structural learning for Bayesian networks by testing complete separators in prime blocks," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3135-3147, December.
    6. Mark Borsuk & Robert Clemen & Lynn Maguire & Kenneth Reckhow, 2001. "Stakeholder Values and Scientific Modeling in the Neuse River Watershed," Group Decision and Negotiation, Springer, vol. 10(4), pages 355-373, July.
    7. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    8. Robert T. Clemen & Canan Ulu, 2008. "Interior Additivity and Subjective Probability Assessment of Continuous Variables," Management Science, INFORMS, vol. 54(4), pages 835-851, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
    2. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Ghaffari, Ali & Zare, Samaneh, 2009. "A novel algorithm for prediction of crude oil price variation based on soft computing," Energy Economics, Elsevier, vol. 31(4), pages 531-536, July.
    5. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    6. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    7. Wolfgang Härdle & Zdeněk Hlávka & Gerhard Stahl, 2006. "On the appropriateness of inappropriate VaR models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(2), pages 273-297, June.
    8. Mingming, Tang & Jinliang, Zhang, 2012. "A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices," Journal of Economics and Business, Elsevier, vol. 64(4), pages 275-286.
    9. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    10. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    11. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    12. Unn Lindholm & Marcus Mossfeldt & Pär Stockhammar, 2020. "Forecasting inflation in Sweden," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(1), pages 39-68, April.
    13. Kajal Lahiri & J. George Wang, 2007. "The value of probability forecasts as predictors of cyclical downturns," Applied Economics Letters, Taylor & Francis Journals, vol. 14(1), pages 11-14.
    14. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    15. Donald L. Keefer & Craig W. Kirkwood & James L. Corner, 2004. "Perspective on Decision Analysis Applications, 1990–2001," Decision Analysis, INFORMS, vol. 1(1), pages 4-22, March.
    16. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models: Administrative boundary centroid occurrences require careful interpretation," Ecological Modelling, Elsevier, vol. 472(C).
    17. Burström, Thommie & Parida, Vinit & Lahti, Tom & Wincent, Joakim, 2021. "AI-enabled business-model innovation and transformation in industrial ecosystems: A framework, model and outline for further research," Journal of Business Research, Elsevier, vol. 127(C), pages 85-95.
    18. Martin Kukuk & Michael Rönnberg, 2013. "Corporate credit default models: a mixed logit approach," Review of Quantitative Finance and Accounting, Springer, vol. 40(3), pages 467-483, April.
    19. Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
    20. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:12:y:1996:i:1:p:57-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.