IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v79y2022ics1042443122000804.html
   My bibliography  Save this article

Explaining cryptocurrency returns: A prospect theory perspective

Author

Listed:
  • Chen, Rongxin
  • Lepori, Gabriele M.
  • Tai, Chung-Ching
  • Sung, Ming-Chien

Abstract

We investigate prospect theory’s ability to explain cryptocurrency returns using data concerning 1,573 cryptocurrencies over the period 2014–2020. In line with the theory’s predictions, we find that cryptocurrencies that are more (less) attractive from a prospect theory perspective earn lower (higher) future returns, suggesting that they tend to be overpriced (underpriced). On average, a one cross-sectional standard-deviation increase in the prospect theory value of a cryptocurrency reduces its next-week return by 0.71% relative to its peers. This effect is stronger among cryptocurrencies that are more difficult to arbitrage, but it is not confined to the micro-cap segment of the market.

Suggested Citation

  • Chen, Rongxin & Lepori, Gabriele M. & Tai, Chung-Ching & Sung, Ming-Chien, 2022. "Explaining cryptocurrency returns: A prospect theory perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
  • Handle: RePEc:eee:intfin:v:79:y:2022:i:c:s1042443122000804
    DOI: 10.1016/j.intfin.2022.101599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443122000804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2022.101599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    2. Marc Oliver Rieger & Mei Wang & Thorsten Hens, 2017. "Estimating cumulative prospect theory parameters from an international survey," Theory and Decision, Springer, vol. 82(4), pages 567-596, April.
    3. X. Frank Zhang, 2006. "Information Uncertainty and Stock Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 105-137, February.
    4. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    5. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    6. Fernandez-Perez, Adrian & Frijns, Bart & Fuertes, Ana-Maria & Miffre, Joelle, 2018. "The skewness of commodity futures returns," Journal of Banking & Finance, Elsevier, vol. 86(C), pages 143-158.
    7. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    8. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    9. Nestor Gandelman & Ruben Hernandez-Murillo, 2015. "Risk Aversion at the Country Level," Review, Federal Reserve Bank of St. Louis, vol. 97(1), pages 53-66.
    10. Viktor Manahov, 2021. "Cryptocurrency liquidity during extreme price movements: is there a problem with virtual money?," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 341-360, February.
    11. Mohammed Abdellaoui & Han Bleichrodt & Hilda Kammoun, 2013. "Do financial professionals behave according to prospect theory? An experimental study," Theory and Decision, Springer, vol. 74(3), pages 411-429, March.
    12. Mummolo, Jonathan & Peterson, Erik, 2018. "Improving the Interpretation of Fixed Effects Regression Results," Political Science Research and Methods, Cambridge University Press, vol. 6(4), pages 829-835, October.
    13. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    14. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    15. Lam, F.Y. Eric C. & Wei, K.C. John, 2011. "Limits-to-arbitrage, investment frictions, and the asset growth anomaly," Journal of Financial Economics, Elsevier, vol. 102(1), pages 127-149, October.
    16. Kofi Agyarko Ababio, 2020. "Behavioural Portfolio Selection and Optimisation: Equities versus Cryptocurrencies," Journal of African Business, Taylor & Francis Journals, vol. 21(2), pages 145-168, June.
    17. Shapira, Zur & Venezia, Itzhak, 2001. "Patterns of behavior of professionally managed and independent investors," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1573-1587, August.
    18. Liu, Weiyi & Liang, Xuan & Cui, Guowei, 2020. "Common risk factors in the returns on cryptocurrencies," Economic Modelling, Elsevier, vol. 86(C), pages 299-305.
    19. Liu, Xin, 2021. "Diversification in lottery-like features and portfolio pricing discount: Evidence from closed-end funds," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 1-11.
    20. Grobys, Klaus & Junttila, Juha, 2021. "Speculation and lottery-like demand in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    21. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    22. Grobys, Klaus & Ahmed, Shaker & Sapkota, Niranjan, 2020. "Technical trading rules in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 32(C).
    23. Maren Baars & Michael Goedde‐Menke, 2022. "Ignorance illusion in decisions under risk: The impact of perceived expertise on probability weighting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(1), pages 35-62, March.
    24. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    25. John A. List, 2004. "Neoclassical Theory Versus Prospect Theory: Evidence from the Marketplace," Econometrica, Econometric Society, vol. 72(2), pages 615-625, March.
    26. Kairies-Schwarz, Nadja & Kokot, Johanna & Vomhof, Markus & Weßling, Jens, 2017. "Health insurance choice and risk preferences under cumulative prospect theory – an experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 137(C), pages 374-397.
    27. Zhang, Wei & Li, Yi, 2020. "Is idiosyncratic volatility priced in cryptocurrency markets?," Research in International Business and Finance, Elsevier, vol. 54(C).
    28. Shleifer, Andrei & Vishny, Robert W, 1997. "The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
    29. Taylor, Mark & Xu, Qi & Kozhan, Roman, 2020. "Prospect Theory and Currency Returns: Empirical Evidence," CEPR Discussion Papers 15306, C.E.P.R. Discussion Papers.
    30. Florens Focke & Stefan Ruenzi & Michael Ungeheuer, 2020. "Advertising, Attention, and Financial Markets," The Review of Financial Studies, Society for Financial Studies, vol. 33(10), pages 4676-4720.
    31. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    32. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2020. "A three-factor pricing model for cryptocurrencies," Finance Research Letters, Elsevier, vol. 34(C).
    33. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    34. Kliger, Doron & Levy, Ori, 2009. "Theories of choice under risk: Insights from financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 330-346, August.
    35. Samuelson, William & Zeckhauser, Richard, 1988. "Status Quo Bias in Decision Making," Journal of Risk and Uncertainty, Springer, vol. 1(1), pages 7-59, March.
    36. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    37. Kai Ruggeri & Sonia Alí & Mari Louise Berge & Giulia Bertoldo & Ludvig D. Bjørndal & Anna Cortijos-Bernabeu & Clair Davison & Emir Demić & Celia Esteban-Serna & Maja Friedemann & Shannon P. Gibson & H, 2020. "Replicating patterns of prospect theory for decision under risk," Nature Human Behaviour, Nature, vol. 4(6), pages 622-633, June.
    38. Gurevich, Gregory & Kliger, Doron & Levy, Ori, 2009. "Decision-making under uncertainty - A field study of cumulative prospect theory," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1221-1229, July.
    39. Timothy King & Dimitrios Koutmos, 2021. "Herding and feedback trading in cryptocurrency markets," Annals of Operations Research, Springer, vol. 300(1), pages 79-96, May.
    40. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    41. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    42. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    43. Joshua Madsen & Marina Niessner, 2019. "Is Investor Attention for Sale? The Role of Advertising in Financial Markets," Journal of Accounting Research, Wiley Blackwell, vol. 57(3), pages 763-795, June.
    44. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    45. Zhong, Xiaoling & Wang, Junbo, 2018. "Prospect theory and corporate bond returns: An empirical study," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 25-48.
    46. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    47. Kadan, Ohad & Michaely, Roni & Moulton, Pamela C., 2018. "Trading in the Presence of Short-Lived Private Information: Evidence from Analyst Recommendation Changes," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(4), pages 1509-1546, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. EOM, Cheoljun & EOM, Yunsung & PARK, Jong Won, 2024. "Intermediate cross-sectional prospect theory value in stock markets: A novel method," International Review of Financial Analysis, Elsevier, vol. 93(C).
    2. Dobrynskaya, Victoria, 2024. "Is downside risk priced in cryptocurrency market?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    3. Fieberg, Christian & Günther, Steffen & Poddig, Thorsten & Zaremba, Adam, 2024. "Non-standard errors in the cryptocurrency world," International Review of Financial Analysis, Elsevier, vol. 92(C).
    4. Sadaqat, Mohsin & Butt, Hilal Anwar, 2023. "Stop-loss rules and momentum payoffs in cryptocurrencies," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    5. Chen, Rongxin & Lepori, Gabriele M. & Tai, Chung-Ching & Sung, Ming-Chien, 2022. "Can salience theory explain investor behaviour? Real-world evidence from the cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Rongxin & Lepori, Gabriele M. & Tai, Chung-Ching & Sung, Ming-Chien, 2022. "Can salience theory explain investor behaviour? Real-world evidence from the cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    2. EOM, Cheoljun & EOM, Yunsung & PARK, Jong Won, 2024. "Intermediate cross-sectional prospect theory value in stock markets: A novel method," International Review of Financial Analysis, Elsevier, vol. 93(C).
    3. Wang, Junbo & Wu, Chunchi & Zhong, Xiaoling, 2021. "Prospect theory and stock returns: Evidence from foreign share markets," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    4. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    5. Zhong, Xiaoling & Wang, Junbo, 2018. "Prospect theory and corporate bond returns: An empirical study," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 25-48.
    6. Zhao, Xiaojuan & Wang, Ye & Liu, Weiyi, 2024. "Someone like you: Lottery-like preference and the cross-section of expected returns in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    7. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    8. Atilgan, Yigit & Bali, Turan G. & Demirtas, K. Ozgur & Gunaydin, A. Doruk, 2020. "Left-tail momentum: Underreaction to bad news, costly arbitrage and equity returns," Journal of Financial Economics, Elsevier, vol. 135(3), pages 725-753.
    9. Baars, Maren & Mohrschladt, Hannes, 2021. "An alternative behavioral explanation for the MAX effect," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 868-886.
    10. Wang, Huijun & Yan, Jinghua & Yu, Jianfeng, 2017. "Reference-dependent preferences and the risk–return trade-off," Journal of Financial Economics, Elsevier, vol. 123(2), pages 395-414.
    11. Li An & Huijun Wang & Jian Wang & Jianfeng Yu, 2020. "Lottery-Related Anomalies: The Role of Reference-Dependent Preferences," Management Science, INFORMS, vol. 66(1), pages 473-501, January.
    12. David Hirshleife, 2015. "Behavioral Finance," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 133-159, December.
    13. Ohk, Seungbin & Ju, Biung-Ghi, 2021. "Capitalizing on prospect theory value: The Asian developed stock markets," Japan and the World Economy, Elsevier, vol. 57(C).
    14. Neszveda, G., 2019. "Essays on behavioral finance," Other publications TiSEM 05059039-5236-42a3-be1b-3, Tilburg University, School of Economics and Management.
    15. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning analysis of stock market anomalies under prospect stochastic dominance," Working Papers unige:134101, University of Geneva, Geneva School of Economics and Management.
    16. Wang, Cheng & Han, Jing, 2023. "Prospect theory and mutual fund flows: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    17. Olapeju Comfort Ogunmokun & Oluwasoye P. Mafimisebi & Demola Obembe, 2023. "Prospect theory and bank credit risk decision-making behaviour: a systematic literature review and future research agenda," SN Business & Economics, Springer, vol. 3(4), pages 1-25, April.
    18. Leong, Minhao & Kwok, Simon, 2023. "The pricing of jump and diffusive risks in the cross-section of cryptocurrency returns," Journal of Empirical Finance, Elsevier, vol. 74(C).
    19. Fang, Yi & Niu, Hui & Lin, Yuen, 2023. "Ex-ante Valuation based on Prospect Theory," MPRA Paper 116386, University Library of Munich, Germany.
    20. Lin, Mei-Chen, 2023. "Analyst coverage and the idiosyncratic skewness effect in the Taiwan stock market," International Review of Financial Analysis, Elsevier, vol. 85(C).

    More about this item

    Keywords

    Prospect theory; Behavioural asset pricing; Cryptocurrency; Cross-section of returns;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:79:y:2022:i:c:s1042443122000804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.