IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v95y2020icp183-198.html
   My bibliography  Save this article

Risk aggregation in non-life insurance: Standard models vs. internal models

Author

Listed:
  • Eling, Martin
  • Jung, Kwangmin

Abstract

Standard models for capital requirements restrict the correlation between risk factors to the linear measure and disregard undertaking-specific parameters. We consider an alternative framework for risk aggregation in non-life insurance using vine copulas that allow non-linear dependence and are estimated with undertaking-specific parameters. We empirically compare our alternative risk model with three regulatory standard models (Korean risk-based capital, Solvency II, Swiss Solvency Test) and show that the standard models lead to more than 50% higher capital requirements on average. Half of the overestimation results from the uniform parameter selection imposed by regulations and the other half comes from the linear correlation assumption. The differences might distort competition when both standard models and internal risk models are used in a single market.

Suggested Citation

  • Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.
  • Handle: RePEc:eee:insuma:v:95:y:2020:i:c:p:183-198
    DOI: 10.1016/j.insmatheco.2020.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872030130X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    2. Geert Bekaert & Michael Ehrmann & Marcel Fratzscher & Arnaud Mehl, 2014. "The Global Crisis and Equity Market Contagion," Journal of Finance, American Finance Association, vol. 69(6), pages 2597-2649, December.
    3. Brooks,Chris, 2008. "RATS Handbook to Accompany Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9780521896955.
    4. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    5. Eling, Martin & Gatzert, Nadine & Schmeiser, Hato, 2009. "Minimum standards for investment performance: A new perspective on non-life insurer solvency," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 113-122, August.
    6. Lewellen, Katharina, 2006. "Financing decisions when managers are risk averse," Journal of Financial Economics, Elsevier, vol. 82(3), pages 551-589, December.
    7. Bermúdez, Lluís & Ferri, Antoni & Guillén, Montserrat, 2013. "A Correlation Sensitivity Analysis Of Non-Life Underwriting Risk In Solvency Capital Requirement Estimation," ASTIN Bulletin, Cambridge University Press, vol. 43(1), pages 21-37, January.
    8. Alexander Braun, 2016. "Pricing in the Primary Market for Cat Bonds: New Empirical Evidence," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 811-847, December.
    9. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    12. Gormley, Todd A. & Matsa, David A., 2016. "Playing it safe? Managerial preferences, risk, and agency conflicts," Journal of Financial Economics, Elsevier, vol. 122(3), pages 431-455.
    13. Ederington, Louis H. & Guan, Wei, 2010. "Longer-Term Time-Series Volatility Forecasts," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 1055-1076, August.
    14. Robert W Klein, 2012. "Principles for Insurance Regulation: An Evaluation of Current Practices and Potential Reforms," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 37(1), pages 175-199, January.
    15. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2016. "Correlations Between Insurance Lines Of Business: An Illusion Or A Real Phenomenon? Some Methodological Considerations," ASTIN Bulletin, Cambridge University Press, vol. 46(2), pages 225-263, May.
    16. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    17. Diers, Dorothea & Eling, Martin & Marek, Sebastian D., 2012. "Dependence modeling in non-life insurance using the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 430-436.
    18. Bølviken, Erik & Guillen, Montserrat, 2017. "Risk aggregation in Solvency II through recursive log-normals," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 20-26.
    19. Filipović, Damir, 2009. "Multi-Level Risk Aggregation," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 565-575, November.
    20. Martin Eling & Hato Schmeiser & Joan T. Schmit, 2007. "The Solvency II Process: Overview and Critical Analysis," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 10(1), pages 69-85, March.
    21. Cornelia Savu & Mark Trede, 2010. "Hierarchies of Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 295-304.
    22. Laurent Devineau & Stéphane Loisel, 2009. "Risk aggregation in Solvency II: How to converge the approaches of the internal models and those of the standard formula?," Post-Print hal-00403662, HAL.
    23. Helmut Gründl & Ming (Ivy) Dong & Jens Gal, 2016. "The evolution of insurer portfolio investment strategies for long-term investing," OECD Journal: Financial Market Trends, OECD Publishing, vol. 2016(2), pages 1-55.
    24. Eugene F. Fama, 2002. "Testing Trade-Off and Pecking Order Predictions About Dividends and Debt," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 1-33, March.
    25. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    26. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    27. Faias, José Afonso & Guedes, José, 2020. "The diffusion of complex securities: The case of CAT bonds," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 46-57.
    28. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    29. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    30. Rodney Ramcharan & Stéphane Verani & Skander J. Van Den Heuvel, 2016. "From Wall Street to Main Street: The Impact of the Financial Crisis on Consumer Credit Supply," Journal of Finance, American Finance Association, vol. 71(3), pages 1323-1356, June.
    31. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    32. Christiansen, Marcus C. & Denuit, Michel M. & Lazar, Dorina, 2012. "The Solvency II square-root formula for systematic biometric risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 257-265.
    33. Ballotta, Laura & Esposito, Giorgia & Haberman, Steven, 2006. "The IASB Insurance Project for life insurance contracts: Impact on reserving methods and solvency requirements," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 356-375, December.
    34. Christiansen, Marcus C. & Denuit, Michel & Lazar, Dorina, 2012. "The Solvency II square-root formula for systematic biometric risk," LIDAM Reprints ISBA 2012002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krystian Szczęsny & Stanisław Wanat & Anna Denkowska, 2023. "Solvency II and diversification effect for non-life premium and reserves risk: new results based on non-parametric copulas," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-26, September.
    2. Olga I. Vikarchuk & Serhii M. Nikolaienko & Olena O. Kalinichenko & Iryna O. Poita, 2020. "Integrated evaluation as a precedence of economic security management insurance market," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 suppl.), pages 157-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Empirical Performance of an ESG Assets Portfolio from US Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
    2. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    3. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    4. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    5. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    6. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    7. Çekin, Semih Emre & Pradhan, Ashis Kumar & Tiwari, Aviral Kumar & Gupta, Rangan, 2020. "Measuring co-dependencies of economic policy uncertainty in Latin American countries using vine copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 207-217.
    8. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
    9. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    10. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    11. Zhang, Bangzheng & Wei, Yu & Yu, Jiang & Lai, Xiaodong & Peng, Zhenfeng, 2014. "Forecasting VaR and ES of stock index portfolio: A Vine copula method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 112-124.
    12. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    13. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    14. Mezőfi, Balázs & Niedermayer, Andras & Niedermayer, Daniel & Süli, Balázs Márton, 2017. "Solvency II reporting: How to interpret funds’ aggregate solvency capital requirement figures," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 164-171.
    15. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    16. Wanling Huang & André Varella Mollick & Khoa Huu Nguyen, 2017. "Dynamic responses and tail-dependence among commodities, the US real interest rate and the dollar," Empirical Economics, Springer, vol. 53(3), pages 959-997, November.
    17. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    18. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    19. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    20. Adlane Haffar & Éric Le Fur, 2022. "Dependence structure of CAT bonds and portfolio diversification: a copula-GARCH approach," Journal of Asset Management, Palgrave Macmillan, vol. 23(4), pages 297-309, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:95:y:2020:i:c:p:183-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.