IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v73y2017icp20-26.html
   My bibliography  Save this article

Risk aggregation in Solvency II through recursive log-normals

Author

Listed:
  • Bølviken, Erik
  • Guillen, Montserrat

Abstract

It is argued that the accuracy of risk aggregation in Solvency II can be improved by updating skewness recursively. A simple scheme based on the log-normal distribution is developed and shown to be superior to the standard formula and to adjustments of the Cornish–Fisher type. The method handles tail-dependence if a simple Monte Carlo step is included. A hierarchical Clayton copula is constructed and used to confirm the accuracy of the log-normal approximation and to demonstrate the importance of including tail-dependence. Arguably a log-normal scheme makes the logic in Solvency II consistent, but many other distributions might be used as vehicle, a topic that may deserve further study.

Suggested Citation

  • Bølviken, Erik & Guillen, Montserrat, 2017. "Risk aggregation in Solvency II through recursive log-normals," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 20-26.
  • Handle: RePEc:eee:insuma:v:73:y:2017:i:c:p:20-26
    DOI: 10.1016/j.insmatheco.2016.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716302785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Alexander Braun & Hato Schmeiser & Florian Schreiber, 2015. "Solvency II's Market Risk Standard Formula: How Credible Is the Proclaimed Ruin Probability," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 38(1), pages 1-30.
    3. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    4. Bermúdez, Lluís & Ferri, Antoni & Guillén, Montserrat, 2013. "A Correlation Sensitivity Analysis Of Non-Life Underwriting Risk In Solvency Capital Requirement Estimation," ASTIN Bulletin, Cambridge University Press, vol. 43(1), pages 21-37, January.
    5. Filipović, Damir, 2009. "Multi-Level Risk Aggregation," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 565-575, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.
    2. Eric Beutner & Henryk Zähle, 2018. "Bootstrapping Average Value at Risk of Single and Collective Risks," Risks, MDPI, vol. 6(3), pages 1-30, September.
    3. Lina M Cortés & Juan F. Rendón & Javier Perote, 2021. "Determining the banking solvency risk in times of COVID-19 through Gram-Charlier expansions," Documentos de Trabajo de Valor Público 19593, Universidad EAFIT.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.
    2. Catalina Bolancé & Montserrat Guillén & Alemar Padilla, 2015. "Estimación del riesgo mediante el ajuste de cópulas," Working Papers 2015-01, Universitat de Barcelona, UB Riskcenter.
    3. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    4. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    5. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    6. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    7. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    8. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    9. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    10. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    11. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Zhichao Zhang & Fan Zhang & Zhuang Zhang, 2013. "Strategic Asset Allocation for China's Foreign Reserves: A Copula Approach," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 21(6), pages 1-21, November.
    13. Zhiwei Bai & Hongkui Wei & Yingying Xiao & Shufang Song & Sergei Kucherenko, 2021. "A Vine Copula-Based Global Sensitivity Analysis Method for Structures with Multidimensional Dependent Variables," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    14. Zhi, Bangdong & Wang, Xiaojun & Xu, Fangming, 2022. "Managing inventory financing in a volatile market: A novel data-driven copula model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    16. Mazo, Gildas & Averyanov, Yaroslav, 2019. "Constraining kernel estimators in semiparametric copula mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 170-189.
    17. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    18. Dominique Guegan & Bertrand K. Hassani, 2011. "Operational risk: a Basel II++ step before Basel III," Documents de travail du Centre d'Economie de la Sorbonne 11053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Rubén Albeiro Loaiza Maya & Jose Eduardo Gomez-Gonzalez & Luis Fernando Melo Velandia, 2015. "Latin American Exchange Rate Dependencies: A Regular Vine Copula Approach," Contemporary Economic Policy, Western Economic Association International, vol. 33(3), pages 535-549, July.
    20. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.

    More about this item

    Keywords

    Clayton copula; Cornish–Fisher; Moment matching; Recursive skewness; Standard formula; Sum of log-normals;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:73:y:2017:i:c:p:20-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.