IDEAS home Printed from https://ideas.repec.org/e/pju170.html
   My authors  Follow this author

Kwangmin Jung

Personal Details

First Name:Kwangmin
Middle Name:
Last Name:Jung
Suffix:
RePEc Short-ID:pju170
[This author has chosen not to make the email address public]
http://airm.postech.ac.kr
Cheongam-ro 77, Nam-gu 4th Science Building, Office 417
+821091300267

Affiliation

Institut für Versicherungswirtschaft
School of Finance
Universität St. Gallen

Sankt Gallen, Switzerland
http://www.ivw.unisg.ch/
RePEc:edi:ivwsgch (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.

Articles

  1. Jung, Kwangmin & Park, Seyoung, 2024. "Optimal reinsurance with a systemic surplus shock," Economics Letters, Elsevier, vol. 244(C).
  2. Kwangmin Jung & Jonghun Kam & Seungjoon Lee, 2024. "Tropical cyclone risk assessment reflecting the climate change trend: the case of South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5841-5867, April.
  3. Jiam Song & Kwangmin Jung & Jonghun Kam, 2023. "Evidence of the time-varying impacts of the COVID-19 pandemic on online search activities relating to shopping products in South Korea," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
  4. Jiam Song & Kwangmin Jung & Jonghun Kam, 2023. "Correction: Evidence of the time-varying impacts of the COVID-19 pandemic on online search activities relating to shopping products in South Korea," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-1, December.
  5. Sangyong Han & Kwangmin Jung, 2023. "CEO political orientation, risk taking, and firm performance: evidence from the U.S. property-liability insurance industry," Economics of Governance, Springer, vol. 24(1), pages 1-39, March.
  6. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
  7. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
  8. Eling, Martin & Jung, Kwangmin & Shim, Jeungbo, 2022. "Unraveling heterogeneity in cyber risks using quantile regressions," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 222-242.
  9. Kwangmin Jung, 2021. "Extreme Data Breach Losses: An Alternative Approach to Estimating Probable Maximum Loss for Data Breach Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(4), pages 580-603, November.
  10. Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.
  11. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.

    Cited by:

    1. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    2. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    3. Sung Hoon Choi & Donggyu Kim, 2023. "Large Global Volatility Matrix Analysis Based on Observation Structural Information," Papers 2305.01464, arXiv.org, revised Feb 2024.

Articles

  1. Sangyong Han & Kwangmin Jung, 2023. "CEO political orientation, risk taking, and firm performance: evidence from the U.S. property-liability insurance industry," Economics of Governance, Springer, vol. 24(1), pages 1-39, March.

    Cited by:

    1. Ratapol Wudhikarn & Photchanaphisut Pattanasak & Vorathamon Cherapanukorn & Boontarika Paphawasit, 2024. "Evaluating the Intellectual Capital of Intensively Tourism-Dependent Countries Between, Prior, and During the COVID-19 Pandemic," Sustainability, MDPI, vol. 16(4), pages 1-24, February.

  2. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    See citations under working paper version above.
  3. Eling, Martin & Jung, Kwangmin & Shim, Jeungbo, 2022. "Unraveling heterogeneity in cyber risks using quantile regressions," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 222-242.

    Cited by:

    1. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    2. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.

  4. Kwangmin Jung, 2021. "Extreme Data Breach Losses: An Alternative Approach to Estimating Probable Maximum Loss for Data Breach Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(4), pages 580-603, November.

    Cited by:

    1. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang, 2022. "Cyber Loss Model Risk Translates to Premium Mispricing and Risk Sensitivity," Papers 2202.10588, arXiv.org, revised Mar 2023.
    2. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    3. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    4. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    5. Bennet Skarczinski & Mathias Raschke & Frank Teuteberg, 2023. "Modelling maximum cyber incident losses of German organisations: an empirical study and modified extreme value distribution approach," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 463-501, April.
    6. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.
    7. Matteo Malavasi & Gareth W. Peters & Stefan Treuck & Pavel V. Shevchenko & Jiwook Jang & Georgy Sofronov, 2024. "Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications," Papers 2410.05297, arXiv.org.
    8. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.

  5. Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.

    Cited by:

    1. Krystian Szczęsny & Stanisław Wanat & Anna Denkowska, 2023. "Solvency II and diversification effect for non-life premium and reserves risk: new results based on non-parametric copulas," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-26, September.
    2. Olga I. Vikarchuk & Serhii M. Nikolaienko & Olena O. Kalinichenko & Iryna O. Poita, 2020. "Integrated evaluation as a precedence of economic security management insurance market," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 suppl.), pages 157-171.

  6. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.

    Cited by:

    1. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    2. Eric Dal Moro, 2020. "Towards an Economic Cyber Loss Index for Parametric Cover Based on IT Security Indicator: A Preliminary Analysis," Risks, MDPI, vol. 8(2), pages 1-12, May.
    3. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    4. Yin-Yee Leong & Yen-Chih Chen, 2020. "Cyber risk cost and management in IoT devices-linked health insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 737-759, October.
    5. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    6. Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
    7. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    8. Frank Cremer & Barry Sheehan & Michael Fortmann & Arash N. Kia & Martin Mullins & Finbarr Murphy & Stefan Materne, 2022. "Cyber risk and cybersecurity: a systematic review of data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 698-736, July.
    9. Wing Fung Chong & Runhuan Feng & Hins Hu & Linfeng Zhang, 2022. "Cyber Risk Assessment for Capital Management," Papers 2205.08435, arXiv.org, revised Oct 2023.
    10. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    12. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    13. Jiang, Cuixia & Li, Yuqian & Xu, Qifa & Liu, Yezheng, 2021. "Measuring risk spillovers from multiple developed stock markets to China: A vine-copula-GARCH-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 386-398.
    14. Kerstin Awiszus & Thomas Knispel & Irina Penner & Gregor Svindland & Alexander Vo{ss} & Stefan Weber, 2022. "Modeling and Pricing Cyber Insurance -- Idiosyncratic, Systematic, and Systemic Risks," Papers 2209.07415, arXiv.org, revised Dec 2022.
    15. Sojung Kim & Stefan Weber, 2020. "Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach," Papers 2009.03653, arXiv.org, revised Jan 2022.
    16. Na Ren & Xin Zhang, 2024. "A novel k-generation propagation model for cyber risk and its application to cyber insurance," Papers 2408.14151, arXiv.org.
    17. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.
    18. Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.
    19. Matteo Malavasi & Gareth W. Peters & Stefan Treuck & Pavel V. Shevchenko & Jiwook Jang & Georgy Sofronov, 2024. "Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications," Papers 2410.05297, arXiv.org.
    20. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    21. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    22. Albina Orlando, 2021. "Cyber Risk Quantification: Investigating the Role of Cyber Value at Risk," Risks, MDPI, vol. 9(10), pages 1-12, October.
    23. Da, Gaofeng & Xu, Maochao & Zhao, Peng, 2021. "Multivariate dependence among cyber risks based on L-hop propagation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 525-546.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-RMG: Risk Management (1) 2021-03-01. Author is listed

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Kwangmin Jung should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.