IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v36y2019i1-4p57-75n4.html
   My bibliography  Save this article

On corrected phase-type approximations of the time value of ruin with heavy tails

Author

Listed:
  • Geiger Daniel J.

    (Department of Mathematics and Statistics, Missouri University of Science and Technology, 400 W 12th St, Rolla, MO 65409, USA)

  • Adekpedjou Akim

    (Department of Mathematics and Statistics, Missouri University of Science and Technology, 400 W 12th St, Rolla, MO 65409, USA)

Abstract

We approximate Gerber–Shiu functions with heavy-tailed claims in a recently introduced risk model having both interclaim times and premiums depending on the claim sizes. We apply a technique known as “corrected phase-type approximations”. This results in adding a correction term to the Gerber–Shiu function with phase-type claim sizes. The correction term contains the heavy-tailed behavior at most once per convolution and captures the tail behavior of the true Gerber–Shiu function. We make the tail behavior specific in the classical case of one class of risk insured. After illustrating a use of such approximations, we study numerically the approximations’ relative errors for some specific penalty functions and claims distributions.

Suggested Citation

  • Geiger Daniel J. & Adekpedjou Akim, 2019. "On corrected phase-type approximations of the time value of ruin with heavy tails," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 57-75, December.
  • Handle: RePEc:bpj:strimo:v:36:y:2019:i:1-4:p:57-75:n:4
    DOI: 10.1515/strm-2019-0009
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/strm-2019-0009
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/strm-2019-0009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vatamidou, E. & Adan, I.J.B.F. & Vlasiou, M. & Zwart, B., 2013. "Corrected phase-type approximations of heavy-tailed risk models using perturbation analysis," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 366-378.
    2. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    3. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    2. Orbán Mihálykó, Éva & Mihálykó, Csaba, 2011. "Mathematical investigation of the Gerber-Shiu function in the case of dependent inter-claim time and claim size," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 378-383, May.
    3. Josef Anton Strini & Stefan Thonhauser, 2020. "On Computations in Renewal Risk Models—Analytical and Statistical Aspects," Risks, MDPI, vol. 8(1), pages 1-20, March.
    4. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    5. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    6. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    7. Min Song & Rong Wu & Xin Zhang, 2008. "Total duration of negative surplus for the dual model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 591-600, November.
    8. Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    9. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
    10. Peralta, Oscar & Rojas-Nandayapa, Leonardo & Xie, Wangyue & Yao, Hui, 2018. "Approximation of ruin probabilities via Erlangized scale mixtures," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 136-156.
    11. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    12. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    13. Young, Virginia R., 2017. "Purchasing casualty insurance to avoid lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 133-142.
    14. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.
    15. Feng, Runhuan & Volkmer, Hans W., 2012. "Modeling credit value adjustment with downgrade-triggered termination clause using a ruin theoretic approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 409-421.
    16. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    17. Zied Ben-Salah & H'el`ene Gu'erin & Manuel Morales & Hassan Omidi Firouzi, 2014. "On the Depletion Problem for an Insurance Risk Process: New Non-ruin Quantities in Collective Risk Theory," Papers 1406.6952, arXiv.org.
    18. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    19. Kolkovska, Ekaterina T. & Martín-González, Ehyter M., 2016. "Gerber–Shiu functionals for classical risk processes perturbed by an α-stable motion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 22-28.
    20. Jos'e Miguel Flores-Contr'o, 2024. "The Gerber-Shiu Expected Discounted Penalty Function: An Application to Poverty Trapping," Papers 2402.11715, arXiv.org, revised Sep 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:36:y:2019:i:1-4:p:57-75:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.