IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v65y2015icp46-54.html
   My bibliography  Save this article

On minimizing drawdown risks of lifetime investments

Author

Listed:
  • Chen, Xinfu
  • Landriault, David
  • Li, Bin
  • Li, Dongchen

Abstract

Drawdown measures the decline of portfolio value from its historic high-water mark. In this paper, we study a lifetime investment problem aiming at minimizing the risk of drawdown occurrences. Under the Black–Scholes framework, we examine two financial market models: a market with two risky assets, and a market with a risk-free asset and a risky asset. Closed-form optimal trading strategies are derived under both models by utilizing a decomposition technique on the associated Hamilton–Jacobi–Bellman (HJB) equation. We show that it is optimal to minimize the portfolio variance when the fund value is at its historic high-water mark. Moreover, when the fund value drops, the proportion of wealth invested in the asset with a higher instantaneous rate of return should be increased. We find that the instantaneous return rate of the minimum lifetime drawdown probability (MLDP) portfolio is never less than the return rate of the minimum variance (MV) portfolio. This supports the practical use of drawdown-based performance measures in which the role of volatility is replaced by drawdown.

Suggested Citation

  • Chen, Xinfu & Landriault, David & Li, Bin & Li, Dongchen, 2015. "On minimizing drawdown risks of lifetime investments," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 46-54.
  • Handle: RePEc:eee:insuma:v:65:y:2015:i:c:p:46-54
    DOI: 10.1016/j.insmatheco.2015.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715301244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    3. Romuald Elie & Nizar Touzi, 2008. "Optimal lifetime consumption and investment under a drawdown constraint," Finance and Stochastics, Springer, vol. 12(3), pages 299-330, July.
    4. Kristen Moore & Virginia Young, 2006. "Optimal and Simple, Nearly Optimal Rules for Minimizing the Probability Of Financial Ruin in Retirement," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 145-161.
    5. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    6. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2015. "Minimizing the expected lifetime spent in drawdown under proportional consumption," Finance Research Letters, Elsevier, vol. 15(C), pages 106-114.
    7. Vladimir Cherny & Jan Obloj, 2011. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Papers 1110.6289, arXiv.org, revised Apr 2013.
    8. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    9. Virginia Young, 2004. "Optimal Investment Strategy to Minimize the Probability of Lifetime Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(4), pages 106-126.
    10. Klass, Michael J. & Nowicki, Krzysztof, 2005. "The Grossman and Zhou investment strategy is not always optimal," Statistics & Probability Letters, Elsevier, vol. 74(3), pages 245-252, October.
    11. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yakun Liu & Jingchao Li & Jieming Zhou & Yingchun Deng, 2024. "Optimal Investment and Reinsurance to Maximize the Probability of Drawup Before Drawdown," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-34, September.
    2. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2022. "Optimal dividends under a drawdown constraint and a curious square-root rule," Papers 2206.12220, arXiv.org.
    3. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    4. C. A. Valle & J. E. Beasley, 2019. "A nonlinear optimisation model for constructing minimal drawdown portfolios," Papers 1908.08684, arXiv.org.
    5. Huang, Huaxiong & Milevsky, Moshe A., 2016. "Longevity risk and retirement income tax efficiency: A location spending rate puzzle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 50-62.
    6. Cohen, Asaf & Young, Virginia R., 2016. "Minimizing lifetime poverty with a penalty for bankruptcy," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 156-167.
    7. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    8. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    9. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2015. "Minimizing the expected lifetime spent in drawdown under proportional consumption," Finance Research Letters, Elsevier, vol. 15(C), pages 106-114.
    10. Yu Yuan & Zhibin Liang & Xia Han, 2022. "Minimizing the penalized probability of drawdown for a general insurance company under ambiguity aversion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 259-290, October.
    11. Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.
    12. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2016. "Minimizing the probability of lifetime drawdown under constant consumption," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 210-223.
    13. Ankush Agarwal & Ronnie Sircar, 2016. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Papers 1610.08558, arXiv.org.
    14. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    15. Hansjörg Albrecher & Pablo Azcue & Nora Muler, 2023. "Optimal dividends under a drawdown constraint and a curious square-root rule," Finance and Stochastics, Springer, vol. 27(2), pages 341-400, April.
    16. Chonghu Guan & Zuo Quan Xu, 2023. "Optimal ratcheting of dividend payout under Brownian motion surplus," Papers 2308.15048, arXiv.org, revised Jul 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    2. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    3. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    4. Ankush Agarwal & Ronnie Sircar, 2016. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Papers 1610.08558, arXiv.org.
    5. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    6. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    7. Michael J. Klass & Krzysztof Nowicki, 2010. "On The Consumption/Distribution Theorem Under The Long-Run Growth Criterion Subject To A Drawdown Constraint," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(06), pages 931-957.
    8. Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.
    9. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    10. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    11. Cohen, Asaf & Young, Virginia R., 2016. "Minimizing lifetime poverty with a penalty for bankruptcy," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 156-167.
    12. Junbeom Lee & Xiang Yu & Chao Zhou, 2019. "Lifetime Ruin under High-watermark Fees and Drift Uncertainty," Papers 1909.01121, arXiv.org, revised Oct 2020.
    13. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2015. "Minimizing the expected lifetime spent in drawdown under proportional consumption," Finance Research Letters, Elsevier, vol. 15(C), pages 106-114.
    14. Drenovak, Mikica & Ranković, Vladimir & Urošević, Branko & Jelic, Ranko, 2022. "Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm," Finance Research Letters, Elsevier, vol. 46(PA).
    15. Paolo Guasoni & Jan Obłój, 2016. "The Incentives Of Hedge Fund Fees And High-Water Marks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 269-295, April.
    16. Stanislaus Maier-Paape & Andreas Platen & Qiji Jim Zhu, 2019. "A General Framework for Portfolio Theory. Part III: Multi-Period Markets and Modular Approach," Risks, MDPI, vol. 7(2), pages 1-31, June.
    17. Xiaoqing Liang & Virginia R. Young, 2020. "Minimizing the Probability of Lifetime Exponential Parisian Ruin," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 1036-1064, March.
    18. Liang, Xiaoqing & Young, Virginia R., 2023. "Annuitizing at a bounded, absolutely continuous rate to minimize the probability of lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 80-96.
    19. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    20. Angoshtari, Bahman & Bayraktar, Erhan & Young, Virginia R., 2016. "Minimizing the probability of lifetime drawdown under constant consumption," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 210-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:65:y:2015:i:c:p:46-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.