IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v51y2012i2p442-448.html
   My bibliography  Save this article

An operator splitting harmonic differential quadrature approach to solve Young’s model for life insurance risk

Author

Listed:
  • Ballestra, Luca Vincenzo
  • Ottaviani, Massimiliano
  • Pacelli, Graziella

Abstract

This paper is concerned with the numerical approximation of a mathematical model for life insurance risk that has been presented quite recently by Young (2007, 2008). In particular, such a model, which consists of a system of several non-linear partial differential equations, is solved using a new numerical method that combines an operator splitting procedure with the differential quadrature (DQ) finite difference scheme. This approach allows one to reduce the partial differential problems to systems of linear equations of very small dimension, so that pricing portfolios of many life insurances becomes a relatively easily task. Numerical experiments are presented showing that the method proposed is very accurate and fast. In addition, the limit behavior of portfolios of life insurances as the number of contracts tends to infinity is investigated. This analysis reveals that the prices of portfolios comprising more than five thousand policies can be accurately approximated by solving a linear partial differential equation derived in Young (2007, 2008).

Suggested Citation

  • Ballestra, Luca Vincenzo & Ottaviani, Massimiliano & Pacelli, Graziella, 2012. "An operator splitting harmonic differential quadrature approach to solve Young’s model for life insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 442-448.
  • Handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:442-448
    DOI: 10.1016/j.insmatheco.2012.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2012.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bayraktar, Erhan & Young, Virginia R., 2007. "Hedging life insurance with pure endowments," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 435-444, May.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
    4. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    5. Bayraktar, Erhan & Milevsky, Moshe A. & David Promislow, S. & Young, Virginia R., 2009. "Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 676-691, March.
    6. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    7. Young, Virginia R., 2008. "Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 691-703, April.
    8. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Andreoli & Luca Vincenzo Ballestra & Graziella Pacelli, 2018. "Pricing Credit Default Swaps Under Multifactor Reduced-Form Models: A Differential Quadrature Approach," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 379-406, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    2. Ting Wang & Virginia R. Young, 2010. "Hedging Pure Endowments with Mortality Derivatives," Papers 1011.0248, arXiv.org.
    3. Huang, Yu-Lieh & Tsai, Jeffrey Tzuhao & Yang, Sharon S. & Cheng, Hung-Wen, 2014. "Price bounds of mortality-linked security in incomplete insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 30-39.
    4. Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
    5. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    6. Virginia R. Young, 2007. "Pricing Life Insurance under Stochastic Mortality via the Instantaneous Sharpe Ratio: Theorems and Proofs," Papers 0705.1297, arXiv.org.
    7. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    8. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    9. Djehiche, Boualem & Löfdahl, Björn, 2014. "Risk aggregation and stochastic claims reserving in disability insurance," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 100-108.
    10. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    11. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.
    12. Alessandra Cretarola & Benedetta Salterini, 2023. "Utility-based indifference pricing of pure endowments in a Markov-modulated market model," Papers 2301.13575, arXiv.org.
    13. Da Fonseca, José, 2024. "Pricing guaranteed annuity options in a linear-rational Wishart mortality model," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 122-131.
    14. Li, Jing & Szimayer, Alexander, 2011. "The uncertain mortality intensity framework: Pricing and hedging unit-linked life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 471-486.
    15. Elisa Luciano & Luca Regis & Elena Vigna, 2011. "Delta and Gamma hedging of mortality and interest rate risk," ICER Working Papers - Applied Mathematics Series 01-2011, ICER - International Centre for Economic Research.
    16. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2018. "Indifference pricing of pure endowments via BSDEs under partial information," Papers 1804.00223, arXiv.org, revised Jul 2020.
    17. Bahl, Raj Kumari & Sabanis, Sotirios, 2021. "Model-independent price bounds for Catastrophic Mortality Bonds," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 276-291.
    18. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    19. Young, Virginia R., 2008. "Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 691-703, April.
    20. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:442-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.