IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v41y2007i3p317-338.html
   My bibliography  Save this article

Pricing of Ratchet equity-indexed annuities under stochastic interest rates

Author

Listed:
  • Kijima, Masaaki
  • Wong, Tony

Abstract

We consider the valuation of simple and compound Ratchet equity-indexed annuities (EIAs) in the presence of stochastic interest rates. We assume that the equity index follows a geometric Brownian motion and the short rate follows the extended Vasicek model. Under a given forward measure, we obtain an explicit multivariate normal characterization for multiple log-returns on the equity index. Using such a characterization, closed-form price formulas are derived for both simple and compound Ratchet EIAs. An efficient Monte Carlo simulation scheme is also established to overcome the computational difficulties resulting from the evaluation of high-dimensional multivariate normal cumulative distribution functions (CDFs) embedded in the price formulas as well as the consideration of additional complex contract features. Finally, numerical results are provided to illustrate the computational efficiency of our simulation scheme and the effects of various model and contract parameters on pricing.

Suggested Citation

  • Kijima, Masaaki & Wong, Tony, 2007. "Pricing of Ratchet equity-indexed annuities under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 317-338, November.
  • Handle: RePEc:eee:insuma:v:41:y:2007:i:3:p:317-338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(06)00180-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. Sheldon Lin & Ken Seng Tan, 2003. "Valuation of Equity-Indexed Annuities Under Stochastic Interest Rates," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 72-91.
    2. Moshe Arye Milevsky & Steven E. Posner, 1999. "Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 7, pages 203-218, World Scientific Publishing Co. Pte. Ltd..
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    4. Hans Gerber & Elias Shiu, 2003. "Pricing Lookback Options and Dynamic Guarantees," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(1), pages 48-66.
    5. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    6. Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
    7. Lee, Hangsuck, 2003. "Pricing equity-indexed annuities with path-dependent options," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 677-690, December.
    8. J. A. Nielsen & K. Sandmann, 1996. "The pricing of Asian options under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(3), pages 209-236.
    9. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    10. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    11. Serena Tiong, 2000. "Valuing Equity-Indexed Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 149-163.
    12. Hoi Ying Wong & Ying Lok Cheung, 2004. "Geometric Asian options: valuation and calibration with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 301-314.
    13. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    14. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam W. Kolkiewicz & Fangyuan Sally Lin, 2017. "Pricing Surrender Risk in Ratchet Equity-Index Annuities under Regime-Switching Lévy Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 433-457, July.
    2. Charles Guy Njike Leunga & Donatien Hainaut, 2022. "Valuation of Annuity Guarantees Under a Self-Exciting Switching Jump Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 963-990, June.
    3. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    4. Ballotta, Laura & Eberlein, Ernst & Schmidt, Thorsten & Zeineddine, Raghid, 2021. "Fourier based methods for the management of complex life insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 320-341.
    5. Qian, Linyi & Wang, Wei & Wang, Rongming & Tang, Yincai, 2010. "Valuation of equity-indexed annuity under stochastic mortality and interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 123-129, October.
    6. Dai, Tian-Shyr & Yang, Sharon S. & Liu, Liang-Chih, 2015. "Pricing guaranteed minimum/lifetime withdrawal benefits with various provisions under investment, interest rate and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 364-379.
    7. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    8. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Pricing annuity guarantees under a double regime-switching model," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 62-78.
    9. Jingjiang Peng & Kwai Sun Leung & Yue Kuen Kwok, 2012. "Pricing guaranteed minimum withdrawal benefits under stochastic interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(6), pages 933-941, October.
    10. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    11. Jr-Wei Huang & Sharon S. Yang & Chuang-Chang Chang, 2021. "Modeling Housing Price Dynamics and their Impact on the Cost of no-Negative-Equity-Guarantees for Equity Releasing Products," The Journal of Real Estate Finance and Economics, Springer, vol. 63(2), pages 249-279, August.
    12. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    13. Yuanchuang Shan & Huisheng Shu & Haoran Yi, 2023. "Pricing Equity-Indexed Annuities under a Stochastic Dividend Model," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    14. Günther, Sascha & Hieber, Peter, 2024. "Analyzing the interest rate risk of equity-indexed annuities via scenario matrices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 15-28.
    15. Yaodi Yong & Hailiang Yang, 2021. "Valuation of Cliquet-Style Guarantees with Death Benefits in Jump Diffusion Models," Mathematics, MDPI, vol. 9(16), pages 1-21, August.
    16. Chiu, Yu-Fen & Hsieh, Ming-Hua & Tsai, Chenghsien, 2019. "Valuation and analysis on complex equity indexed annuities," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    17. Maciej Augustyniak & Mathieu Boudreault, 2017. "Mitigating Interest Rate Risk in Variable Annuities: An Analysis of Hedging Effectiveness under Model Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(4), pages 502-525, October.
    18. Hieber, Peter, 2017. "Cliquet-style return guarantees in a regime switching Lévy model," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 138-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Linyi & Wang, Wei & Wang, Rongming & Tang, Yincai, 2010. "Valuation of equity-indexed annuity under stochastic mortality and interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 123-129, October.
    2. Date, P. & Mamon, R. & Jalen, L. & Wang, I.C., 2010. "A linear algebraic method for pricing temporary life annuities and insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 98-104, August.
    3. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    4. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    5. Kira Henshaw & Corina Constantinescu & Olivier Menoukeu Pamen, 2020. "Stochastic Mortality Modelling for Dependent Coupled Lives," Risks, MDPI, vol. 8(1), pages 1-28, February.
    6. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    7. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    8. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    9. Chiu, Yu-Fen & Hsieh, Ming-Hua & Tsai, Chenghsien, 2019. "Valuation and analysis on complex equity indexed annuities," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    10. Barbarin, Jérôme, 2008. "Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 41-55, August.
    11. Chou-Wen Wang & Sharon S. Yang, 2013. "Pricing Survivor Derivatives With Cohort Mortality Dependence Under the Lee–Carter Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 1027-1056, December.
    12. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.
    13. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    14. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    15. Matheus R Grasselli & Sebastiano Silla, 2009. "A policyholder's utility indifference valuation model for the guaranteed annuity option," Papers 0908.3196, arXiv.org.
    16. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    17. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    18. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497, June.
    19. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    20. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Pricing annuity guarantees under a double regime-switching model," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 62-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:41:y:2007:i:3:p:317-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.