IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v48y2011i2p271-279.html
   My bibliography  Save this article

An application of comonotonicity theory in a stochastic life annuity framework

Author

Listed:
  • Liu, Xiaoming
  • Jang, Jisoo
  • Mee Kim, Sun

Abstract

A life annuity contract is an insurance instrument which pays pre-scheduled living benefits conditional on the survival of the annuitant. In order to manage the risk borne by annuity providers, one needs to take into account all sources of uncertainty that affect the value of future obligations under the contract. In this paper, we define the concept of annuity rate as the conditional expected present value random variable of future payments of the annuity, given the future dynamics of its risk factors. The annuity rate deals with the non-diversifiable systematic risk contained in the life annuity contract, and it involves mortality risk as well as investment risk. While it is plausible to assume that there is no correlation between the two risks, each affects the annuity rate through a combination of dependent random variables. In order to understand the probabilistic profile of the annuity rate, we apply comonotonicity theory to approximate its quantile function. We also derive accurate upper and lower bounds for prediction intervals for annuity rates. We use the Lee-Carter model for mortality risk and the Vasicek model for the term structure of interest rates with an annually renewable fixed-income investment policy. Different investment strategies can be handled using this framework.

Suggested Citation

  • Liu, Xiaoming & Jang, Jisoo & Mee Kim, Sun, 2011. "An application of comonotonicity theory in a stochastic life annuity framework," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 271-279, March.
  • Handle: RePEc:eee:insuma:v:48:y:2011:i:2:p:271-279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00143-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel, 2008. "Comonotonic approximations to quantiles of life annuity conditional expected present value," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 831-838, April.
    2. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    3. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    4. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    5. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    6. Hoedemakers, Tom & Darkiewicz, Grzegorz & Goovaerts, Marc, 2005. "Approximations for life annuity contracts in a stochastic financial environment," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 239-269, October.
    7. Daniel Dufresne, 2007. "Stochastic Life Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(1), pages 136-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yixing & Mamon, Rogemar, 2018. "An efficient algorithm for the valuation of a guaranteed annuity option with correlated financial and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gbari, Samuel & Denuit, Michel, 2014. "Efficient approximations for numbers of survivors in the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 71-77.
    2. Grzegorz Darkiewicz & Griselda Deelstra & Jan Dhaene & Tom Hoedemakers & Michèle Vanmaele, 2009. "Bounds for Right Tails of Deterministic and Stochastic Sums of Random Variables," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 847-866, December.
    3. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    4. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    5. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    6. Bahareh Afhami & Mohsen Rezapour & Mohsen Madadi & Vahed Maroufy, 2021. "Dynamic investment portfolio optimization using a Multivariate Merton Model with Correlated Jump Risk," Papers 2104.11594, arXiv.org.
    7. Brückner, Karsten, 2008. "Quantifying the error of convex order bounds for truncated first moments," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 261-270, February.
    8. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    9. Van Weert, Koen & Dhaene, Jan & Goovaerts, Marc, 2010. "Optimal portfolio selection for general provisioning and terminal wealth problems," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 90-97, August.
    10. Annaert, Jan & Deelstra, Griselda & Heyman, Dries & Vanmaele, Michèle, 2007. "Risk management of a bond portfolio using options," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 299-316, November.
    11. Antonella Campana & Paola Ferretti, 2005. "Distortion Risk Measures and Discrete Risks," Game Theory and Information 0510013, University Library of Munich, Germany.
    12. Alain Chateauneuf & Mina Mostoufi & David Vyncke, 2015. "Comonotonic Monte Carlo and its applications in option pricing and quantification of risk," Documents de travail du Centre d'Economie de la Sorbonne 15015, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Hürlimann, Werner, 2010. "Analytical Pricing of the Unit-Linked Endowment with Guarantees and Periodic Premiums," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 631-653, November.
    14. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    15. J. Marin-Solano (Universitat de Barcelona) & O. Roch (Universitat de Barcelona) & J. Dhaene (Katholieke Univerisiteit Leuven) & C. Ribas (Universitat de Barcelona) & M. Bosch-Princep (Universitat de B, 2009. "Buy-and-Hold Strategies and Comonotonic Approximations," Working Papers in Economics 213, Universitat de Barcelona. Espai de Recerca en Economia.
    16. Antonella Campana & Paola Ferretti, 2008. "Bounds for Concave Distortion Risk Measures for Sums of Risks," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 43-51, Springer.
    17. Karel J. in’t Hout & Jacob Snoeijer, 2021. "Numerical Valuation of American Basket Options via Partial Differential Complementarity Problems," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    18. Karel in 't Hout & Jacob Snoeijer, 2021. "Numerical valuation of American basket options via partial differential complementarity problems," Papers 2106.01200, arXiv.org.
    19. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.
    20. Vanmaele, Michele & Deelstra, Griselda & Liinev, Jan, 2004. "Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 343-367, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:2:p:271-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.